

Le 12 mai 2017

La présente fait suite à votre demande d'accès à l'information datée du 27 mars 2017, reçue le 12 avril 2017, et pour laquelle je vous ai transmis un accusé de réception le 13 avril 2017. Votre demande est ainsi formulée :

« Calculs de la Caisse sur l'impact que le futur réseau électrique métropolitain aura sur la viabilité financière des autres modes de transport collectif à Montréal : autobus (STM), métro, train (AMT). Comment le REM affectera-t-il leurs revenues et leur achalandage ? »

En réponse à votre demande d'accès à l'information, vous trouverez ci-inclus deux documents, soit un document intitulé « REM Forecasting Report – November 2016 » ainsi qu'un autre document intitulé « Réseau électrique métropolitain (REM) – Breffage technique – Mise à jour sur le projet » daté du 21 mars 2017.

Ces documents sont les seuls documents que nous détenons que nous pouvons vous transmettre et qui répondent à votre demande d'accès telle que formulée.

Il est important de spécifier que la première étude datée de novembre 2016 ne traite que de l'achalandage et non de l'impact sur les revenus. En effet, CDPQ Infra ne possède aucun document ni aucune information concernant l'impact du REM sur les revenus de l'AMT et de la STM.

En complément à ces documents, nous vous informons que CDPQ Infra est en discussion avec le Comité de transition de la future ARTM qui sera créée en juin prochain. Rappelons que c'est cette nouvelle entité qui aura pour rôle d'harmoniser la tarification métropolitaine et de veiller à l'intégration des réseaux. Les orientations qui devraient être prises par la future ARTM tiendront compte de la mise en service éventuelle du REM et viseront ainsi à assurer son intégration harmonieuse à l'ensemble du réseau métropolitain de transport collectif.

1

Nous considérons que la présente répond entièrement à votre demande d'accès à l'information telle que formulée.

En terminant, pour votre information, nous vous faisons part de la teneur de l'article 135 de la Loi sur l'accès aux documents des organismes publics et sur la protection des renseignements personnels :

«135. Une personne dont la demande écrite a été refusée en tout ou en partie par le responsable de l'accès aux documents ou de la protection des renseignements personnels peut demander à la Commission de réviser cette décision,

Une personne qui a fait une demande en vertu de la présente loi peut demander à la Commission de réviser toute décision du responsable sur le délai de traitement de la demande, sur le mode d'accès à un document ou à un renseignement, sur l'application de l'article 9 ou sur les frais exigibles.

Ces demandes doivent être faites dans les trente jours qui suivent la date de la décision ou de l'expiration du délai accordé par la présente loi au responsable pour répondre à une demande. La Commission peut toutefois, pour un motif raisonnable, relever le requérant du défaut de respecter ce délai.»

Veuillez agréer,

mes salutations distinguées.

Ginette Depelteau Vice-présidente principale, Conformité et investissement responsable et Responsable de l'accès à l'information et de la protection des renseignements personnels

p.j.

E steer davies gleave

Réseau électrique métropolitain (REM)

REM Forecasting Report November 2016

Update November 22, 2016 Forescasting Report Clarification Appendix D CDPQ Infra Inc

Our ref: 22951101 Client ref: BC-A06438

Réseau électrique métropolitain (REM)

REM Forecasting Report November 2016 CDPQ Infra Inc

Our ref: 22951101 Client ref: BC-A06438

Prepared by:

Steer Davies Gleave Suite 970 - 355 Burrard Street Vancouver, BC V6C 2G8 Canada

+1 (604) 629 2610 na.steerdaviesgleave.com Prepared for:

CDPQ Infra Inc 1000 Place Jean-Paul-Riopelle Montréal QC H2Z 2B3

Steer Davies Gleave has prepared this material for CDPQ Infra Inc. This material may only be used within the context and scope for which Steer Davies Gleave has prepared it and may not be relied upon in part or whole by any third party or be used for any other purpose. Any person choosing to use any part of this material without the express and written permission of Steer Davies Gleave shall be deemed to confirm their agreement to indemnify Steer Davies Gleave for all loss or damage resulting therefrom. Steer Davies Gleave has prepared this material using professional practices and procedures using information available to it at the time and as such any new information could alter the validity of the results and conclusions made.

Contents

1	Introduction	.1
	The Project	. 1
	Report Structure	. 1
	Disclaimer	. 2
2	Project Definition	.3
	Stations and Alignment	. 3
	Park & Ride network	. 7
	Rail Network Reorganisation	. 8
	Bus Network Reorganization	. 9
	Fare Assumptions	12
3	Current situation	13
	Background	13
	South Shore/A10 Market	14
	West Island/Deux-Montagnes Line Market	18
	Aéroport Pierre-Elliott-Trudeau Market	25
	Existing Fares	32
4	Modelling approach	36
	Overview	36
	Model overview	36
	Network development	38
	Corridor Demand Choice Models	44
	Airport model	53
	Expansion factors	58
	Ramp up	61
5	Demand Development	63
	2015 Demand - Base Year	63
	Demand Growth	74

	Future Transit Matrix Development	81
	Auto Future Matrix Development	85
6	Model Calibration	86
	Traffic Model	86
	Transit Model	90
	Airport Model	99
7	REM Sponsor Case Forecasts	101
	Sponsor Case definition	101
	Sponsor Case Forecast Review (2015)	103
	Sponsor Case Forecasts (2021 and 2031)	111
8	Sensitivity Tests	122
	Identified risks	122
	Sensitivity Tests	122
	Low and High Case Definition	124
	Ridership Forecasts	126

Figures

Figure 2.1: REM Network	3
Figure 2.2: REM and Montréal's transit network	7
Figure 3.1: REM project	. 13
Figure 3-2: Saint-Laurent River Crossings	. 15
Figure 3-3: Saint-Laurent River crossing transit alternatives	16
Figure 3-4: Current Transit Network (Rive-Sud)	. 17
Figure 3-5: West Island auto screenlines	20
Figure 3-6: Rail and Métro network in the West Island/Deux-Montagnes Line Corridor	22
Figure 3-7: Deux-Montagnes Line AM Peak Profile (Sept 11th 2014) – Towards Downtown Montréal	. 23
Figure 3.8: 747 route alignment and stations	. 26

Figure 3-9: 747 Weekday Hourly demand profile	. 29
Figure 3-10: Average 747 Daily Boardings and Alightings per Stop (March-June 2015)	. 31
Figure 3.11: AMT Fare Zone Map (August 2016)	. 32
Figure 4.1: Forecasting Model Overview	. 37
Figure 4.2: MOTREM zoning system	. 39
Figure 4.3: MOTREM road network	. 40
Figure 4.4: Bus only lanes	. 41
Figure 4.5: Transit services coded by agency	. 43
Figure 4.6: Transit services coded by mode	. 44
Figure 4-7: Logit Model Structure used for the Air Passengers Mode Choice Model	. 54
Figure 4.8: Weekday to Annual Expansion Analysis	. 61
Figure 4.9: 747 Demand Profile	. 61
Figure 5.1: AMT Rail network	. 64
Figure 5.2: 2013 Enquête origine-destination and 2015 AMT Survey Comparison (AM peak)	. 66
Figure 5.3: Work trip distribution (AM Peak)	. 70
Figure 5.4: Study trip distribution (AM Peak)	. 70
Figure 5.5: Other trip distribution (AM Peak)	. 71
Figure 5.6: Work trip distribution (Inter Peak)	. 71
Figure 5.7: Study trip distribution (Inter Peak)	. 72
Figure 5.8: Other trip distribution (Inter Peak)	. 72
Figure 5.9: Airport model zoning system	. 73
Figure 5.10: West Island/Deux-Montagnes Line Historical Ridership Growth	. 75
Figure 5.11: West Island/Deux-Montagnes Line transit ridership and socio-economic parameter growth.	76
Figure 5.12: West Island/Deux-Montagnes Growth Model Results	. 77
Figure 5.13: South Shore/A10 Historical Ridership Growth	. 78
Figure 5.14: South Shore/A10 boardings and socio-economic parameters growth	. 79
Figure 5.15: South Shore/A10 Growth Model Calibration	. 79
Figure 5.16: ADM Airport growth forecast	. 80
Figure 5.17: Comparison of ADM forecasts and GDP-Elasticity model	. 81

Figure 5.18: Macro-zones of Greater Montréal	82
Figure 6-1: St Lawrence River crossing auto screenline	87
Figure 6.2: West Island auto Screenlines	87
Figure 6.3: Deux-Montagnes Line Load Profile – AM Peak towards Montréal	90
Figure 6.4: Mascouche Line Load Profile – AM Peak towards Montréal	91
Figure 6.5: Saint-Jérôme Line Load Profile – AM Peak towards Montréal	91
Figure 6.6: Vaudreuil-Hudson Line Load Profile – AM Peak towards Montréal	
Figure 6.7: Candiac Line Load Profile – AM Peak towards Montréal	92
Figure 6.8: Mont-Saint-Hilaire Line Load Profile – AM Peak towards Montréal	92
Figure 6.9: Deux-Montagnes Line Load Profile – Inter Peak towards Montréal	93
Figure 6.10: Deux-Montagnes Line Load Profile – Inter Peak from Montréal	93
Figure 6.11: Vaudreuil-Hudson Line Load Profile – Inter Peak towards Montréal	
Figure 6.12: Vaudreuil-Hudson Line Load Profile – Inter Peak from Montréal	94
Figure 6.13: Saint-Jérôme Line Load Profile – Inter Peak towards Montréal	94
Figure 6.14: Saint-Jérôme Line Load Profile – Inter Peak from Montréal	94
Figure 6.15: Transit boarding calibration – AM Peak Average Hour	
Figure 6.16: Transit boarding calibration – Inter Peak Average Hour	
Figure 6.17: South Shore/A10 Transit Calibration	
Figure 7.1: AM Peak origin and destination of trips at Mont-Royal tunnel (to Gare Cer	itrale, 2015) 107
Figure 7.2: Zone Analysis Definition – West Island/Deux-Montagnes Line Corridor	108
Figure 7.3: Origins of REM AM Peak demand reductions (to Gare Centrale, 2015)	109
Figure 7.4: Select link of REM demand - Mont-Royal	109
Figure 7.5: Select link of REM demand - Montpellier	110
Figure 7.6: Select link of REM demand - Canora	110
Figure 7.7: AM Peak origin and destination of trips at Champlain Bridge (to Gare Cent	rale, 2015) 111
Figure 7.8: Annual Ridership Profile (with ramp up)	120
Figure 7.9: Annual Passenger Kilometre Profile (with ramp up)	121
Figure 8.1: REM Airport Station Ridership Sensitivity Tests (2031)	123
Figure 8.2: REM Transit Ridership Sensitivity Tests (2031)	124

Figure 8.3: Annual boardings – Low and High Cases (with ramp up)	128
Figure 8.4: Annual Passenger Kilometres – Low and High Case (with ramp up)	128

Tables

Table 2.1: REM stations and travel times	>
Table 2.2: REM Operating Assumptions	5
Table 2.3: Park & Ride Assumptions 8	3
Table 2.4: REM Station Changes)
Table 2.5: West Island Express Service Modifications 11	L
Table 2.6: Bus connections with REM stations (2021) 12)
Table 3-1: 2013 Saint-Laurent River crossing traffic volumes 15	;
Table 3-2: South Shore/A10 corridor demand (October weekday in 2015)	3
Table 3-3: South Shore Park & Ride spaces and occupancy (2015)	3
Table 3-4: West Island corridor traffic demand (2013) 20)
Table 3-5: AMT average ridership (2015) 22)
Table 3-6: West Island/Deux-Montagnes Line Bus Demand (October 2015 weekday) 23	}
Table 3.7: Express Service Demand in the West Island of Montréal (October 15 weekday) 24	ŀ
Table 3.8: West Island/Deux Montagnes Park & Ride sites	;
Table 3.9: 2015 In-scope airport passenger demand by market segment- AM peak and Interpeak periods 28	3
Table 3-10: 747 demand (October 2015 weekday) 29)
Table 3.11: Average fare – AMT Adults (2015 \$)	}
Table 3.12: Average fare – AMT Students (2015 \$)	}
Table 3.13: Average Fares per trip – CIT (2015 \$) 34	ŀ
Table 3.14: Average Fare – STM (2015 \$)	ŀ
Table 3.15: 747 Average Fare Estimate 35	;
Table 4.1: Model Link Modes)
Table 4.2: Transit services coded	}
Table 4.3: Model Transit Time Functions (ttf) 47	7

Table 4.4: Average Fares – CITs (2015 \$)	49
Table 4.5: Average fare – AMT (2015 \$)	49
Table 4.6: AMT and STM fare differential application	50
Table 4.7: Corridor SP Traders Summary	50
Table 4.8: Corridor SP results	51
Table 4.9: Corridor SP results	53
Table 4.10: Generalized Cost components for existing modes	55
Table 4.11: Airport SP Traders Summary	56
Table 4.12: Airport SP results summary	57
Table 4.13: Expansion factor analysis	59
Table 4.14: West Island/Deux-Montagnes Line Expansion Factor Analysis	60
Table 4.15: South Shore/A10 Corridor Expansion Factor Analysis	60
Table 4.16: Ramp Up in LRT Systems	62
Table 4.17: REM Ramp Up Factors	62
Table 5.1: MOTREM Demand Total (2016)	63
Table 5.2: 2013 Enquête origine-destination – Trips by Mode	64
Table 5.3: 2015 AMT – Survey Sample	65
Table 5.4: AMT Car Driver Access Mode Trips (AM Peak)	67
Table 5.5: Bus trip totals	67
Table 5.6: Matrix data source summary	68
Table 5.7: Initial and AMT 2013 enquête transit demand comparison	68
Table 5.8: Historical Transit Demand (Annual)	74
Table 5.9: South Shore/A10 Corridor Historical Transit Demand (Annual passengers)	77
Table 5.10: Airport growth forecast	80
Table 5.11: Socio-economic variables and forecasts	81
Table 5.12: Transit ridership growth estimates	82
Table 5.13: Transit demand growth for 2015 to 2021, work trip purpose, AM Peak	83
Table 5.14: Transit demand growth for 2015 to 2021, work trip purpose, Inter Peak	83
Table 5.15: Total transit demand growth for 2021 to 2031, AM Peak	84
Table 5 16: Total transit demand growth for 2021 to 2031 Inter Peak	

Table 5.17: Transit demand matrices by forecast year	85
Table 6.1: Bridge Crossing Screenline (AM Peak)	88
Table 6.2: Bridge Crossing Screenline (Inter Peak)	88
Table 6.3: West Island Screenline (AM Peak)	89
Table 6.4: West Island Screenline (Inter Peak)	89
Table 6.5: Auto Demand Total – After Calibration	90
Table 6.6: Transit boarding calibration – Average AM Peak Hour	95
Table 6.7: Transit boarding calibration – Average Inter Peak Hour	97
Table 6.8: Champlain Bridge Transit Estimates – AM Peak Period (6am-9am)	98
Table 6.9: Transit Demand Total – After Calibration	99
Table 7.1: Sponsor Case Project Definition	. 101
Table 7.2: Sponsor Case Model Assumptions	. 102
Table 7.3: REM Demand captured by Market	. 103
Table 7.4: REM airport demand capture (2015)	. 103
Table 7.5: REM Airport Demand Split	. 104
Table 7.6: REM Car shift capture (2015)	. 104
Table 7.7: REM transit shift capture (2015)	. 104
Table 7.8: 2015 AM Peak and Inter Peak REM Boardings	. 105
Table 7.9: West Island/Deux-Montagnes Line Boardings (to Gare Centrale, 2015)	. 106
Table 7.10: AM Peak additional demand origin on Mont-Royal tunnel (to Gare Centrale, 2015)	. 108
Table 7.11:AM Peak and Inter Peak REM Boardings	. 112
Table 7.12: REM capture - Airport demand (2021 and 2031)	. 112
Table 7.13: AM and Inter Peak Station Boardings and Alightings (2021 and 2031)	. 113
Table 7.14: REM Section Load Flows	. 114
Table 7.15: Annual Factor Estimate (2021)	. 116
Table 7.16: REM Daily and Annual Boardings (no ramp up)	. 117
Table 7.17: REM Annual Passenger-Kilometres (no ramp up)	. 118
Table 7.18: Existing Demand Estimates	. 119
Table 7.19: Sponsors Case ramp up factors	. 119
Table 7.20: REM Ridership and Passenger Kilometre Summary (with ramp up)	. 120

Table 8.1: Sensitivity tests	. 123
Table 8.2: Sensitivity test definition	. 125
Table 8.3: Ramp Up Assumptions – Low and High Case	. 126
Table 8.4: REM Station Annual Boardings – Low and High Cases (2021)	. 127
Table 8.5: Low and High Case Comparison	. 129
Table 8.6: Low and High Case Peak Loads	. 129

Appendices

- A Future Road Network Assumptions
- B SP Research Review
- C Calibration Bus Services
- D Forecasting Report Clarification

Réseau électrique métropolitain (REM) | REM Forecasting Report

1 Introduction

- 1.1 Steer Davies Gleave was appointed by CDPQ Infra Inc. to develop investment grade forecasts for the Réseau Electrique Métropolitain system (REM), a 67 kilometre light rail network in Métropolitan Montréal.
- 1.2 This report represents the study's third major deliverable and follows the Data Collection Report dated August 2016 and the Base Model Development report dated September 2016.
- 1.3 This report describes the REM specification, the existing in-scope demand, the methodological approach, data collection, demand forecasting framework and ridership forecasts. To provide context and added detail, some materials from the previous reports have been reproduced in this report.

The Project

- 1.4 REM will be a fully automated transportation system, 67 km long, which will provide access to 24 stations. REM will transform the transit offer in the Greater Montréal Area, by providing a new efficient, frequent and reliable service between the South Shore, Downtown Montréal and the West Island and Aéroport Pierre-Elliott-Trudeau.
- 1.5 Moreover, the definition of the project does not only include the REM network but will be complemented with a bus and rail reorganization and a Park & Ride network, which will fully integrate the REM with the rest of the transit and road network, increasing significantly its attractiveness.

Report Structure

- 1.6 Following this introduction, this report includes the following:
 - Section 2 describes the proposed REM project and plans for reorganising the bus and rail services in the REM corridor including proposed Park & Ride sites at REM stations;
 - Section 3 presents the current transport situation in Montréal and defines the 3 in-scope markets for REM: South Shore/A10 (Rive-Sud); West Island/Deux-Montagnes Line and Airport Corridor;
 - Section 4 explains our modelling approach, the existing models and bespoke models prepared for this study;
 - Section 5 describes how we have constructed the 2015 base year demand for the existing inscope ridership, historic growth of public transport ridership in Montréal and future demand growth models;

- Section 6 presents the model calibration, that is, how well the model simulates reality in terms of demand by transport mode and travel times in 2015;
- Section 7 shows the REM sponsor case forecasts for 2015 (assuming the system was in place today), 2021 and 2031;
- Section 8 defines the Low and High scenarios and the forecasts.

Disclaimer

This document is solely for the benefit of CDPQ Infra. No other person or entity may rely upon this document without the prior written consent of Steer Davies Gleave which may be granted or withheld in the Company's sole discretion.

This document contains projected information and data (financial and otherwise), and other forward-looking information, that may or may not occur or prove to be accurate. Such projected and forward-looking information is based on current expectations and projections about future events, many of which are beyond the control of the Company, the Client or any other participant in the Project, and such projections and forward-looking information can be affected by inaccurate assumptions. The projections and forward-looking information were prepared in good faith, but no assurance can be given as to the accuracy or adequacy of such projections and forward-looking information, or the assumptions underlying such projections and forward-looking information.

This document speaks only as of the date thereof and the Company does not undertake any responsibility for updating this document for any reason, including as a result of new information, future events or otherwise.

2 Project Definition

Stations and Alignment

- 2.1 REM will transform the transit offer in the Greater Montréal Area, by providing a new efficient, frequent and reliable service between the South Shore, Downtown Montréal and the West Island and Montréal-Trudeau Aéroport Pierre-Elliott-Trudeau (referred to as the Aéroport Pierre-Elliott-Trudeau).
- 2.2 Moreover, the definition of the project does not only include the REM network but will be complemented with a bus and rail reorganization and a Park & Ride network, which will fully integrate the REM with the rest of the transit and road network, increasing significantly its attractiveness.
- 2.3 This section of the report describes the full specification of the project, including the characteristics of the REM, the Park & Ride network and the bus and rail restructuring.
- 2.4 REM will be a fully automated transportation system, 67 km long, which will provide access to 24 stations. Figure 2.1 shows the extent of the REM network.

Figure 2.1: REM Network

- With a frequent and reliable service running from 5:00 am to 1:00 am 20 hours a day, every day
 REM will provide a significantly enhanced travel experience for commuters and non-commuters in the Montréal Métropolitan region.
- 2.6 REM will provide services to those stations currently served by the Deux-Montagnes AMT Line and it will substantially increase rail coverage with new stations in Rive-Sud, Sainte-Anne-de-Bellevue and Aéroport Pierre-Elliott-Trudeau areas. Moreover, the dedicated tracks will allow for quick and uninterrupted travel and passengers will enjoy substantial travel time savings. The location of the stations and the travel times between stations are shown in Table 2.1.

Table 2.1: REM stations and travel times

Station	Station	Distance (m)	Travel time (mins)	Speed (km/h)	
DEUX-MONTAGNES					
Gare Centrale	Canora	5,410	05:05	64	
Canora	Mont-Royal	820	01:30	33	
Mont-Royal	Correspondance A40	1,470	01:58	45	
Correspondance A40	Montpellier	940	01:37	35	
Montpellier	Du Ruisseau	1,460	02:00	44	
Du Ruisseau	Bois-Franc	1,720	02:07	49	
Bois-Franc	Sunnybrooke	6,390	05:13	73	
Sunnybrooke	Roxboro-Pierrefonds	2,170	02:50	46	
Roxboro-Pierrefonds	Île-Bigras	3,450	02:58	70	
Île -Bigras	Sainte-Dorothée	930	01:42	33	
Sainte-Dorothée	Grand-Moulin	2,700	02:47	58	
Grand-Moulin	Deux-Montages	2,200	02:33	52	
Total		29,660	32:20	55 (average)	
<u>RIVE-SUD</u>					
Gare Centrale	Île-des-Soeurs	5,050	04:57	61	
Île-des-Soeurs	Panama	5,410	04:36	71	
Panama	Du Quartier	3,670	03:20	66	
Du Quartier	Rive-Sud	1,030	01:34	55	
Total		15,570	14:27	65 (average)	
SAINTE-ANNE-DE-BELLEVUE					
Bois-Franc	Autoroute 13	4,440	03:58	67	
Autoroute 13	Des Sources	3,780	03:25	66	
Des Sources	Pointe-Claire	4,130	03:42	67	
Pointe-Claire	Kirkland	2,580	02:49	55	
Kirkland	Sainte-Anne-de-Bellevue	4,280	03:45	68	
Total		19,210	17:39	65 (average)	
AÉROPORT PIERRE-ELLIOTT-TRUDEAU					
Autoroute 13	Technoparc Saint-Laurent	2,500	02:55	51	
Technoparc Saint-Laurent	Aéroport Pierre-Elliott-Trudeau	2,780	02:53	58	
Total		5,280	5:48	55 (average)	
REM NETWORK	<u>REM NETWORK</u>				
TOTAL		67,200	70:14	60 (average)	

Note: Dwell time assumed is 30 seconds for all stations except for Gare Centrale and Panama where it is 40 seconds The total distance accounts for double tracking 2.7 REM will provide enhanced frequencies to the Deux-Montagnes corridor (services every 12 minutes) compared to the existing AMT rail service. It will also introduce very frequent services to the Rive-Sud area (every 2 minutes and 40 seconds) replacing the existing express bus services on the Champlain Bridge. It will also include new rail services to the Aéroport Pierre-Elliott-Trudeau and Sainte-Anne-de-Bellevue (every 12 minutes respectively), which will provide an alternative to the existing express bus services and other local services feeding the Orange Lineline. Table 2.2 shows the key frequency assumptions.

Route	Headway	Travel time (mins)	
	AM (6am-9am)	Inter Peak (9am-3pm)	
Deux-Montagnes to Rive-Sud	12	15	46:47
Roxboro-Pierrefonds to Rive-Sud	12	-	36:47
Sainte-Anne-de-Bellevue to Rive-Sud	12	15	46:23
Aéroport Pierre-Elliott-Trudeau to Rive-Sud	12	15*	38:30
Correspondance A40 to Rive-Sud**	20	-	23:00
Peak Headways per period	2mins 40sec. From Correspondance A40 to Rive-Sud	5 mins From Gare Centrale to Rive-Sud	-

Table 2.2: REM Operating Assumptions

*Inter Peak service from Aéroport Pierre-Elliott-Trudeau is express from Bois-Franc to Gare Centrale

** In the AM peak it is assumed a new additional service from Correspondance A40 to cover the demand alighting from the Mascouche Line service

2.8 As a result of this operating plan, the headway from Bois Franc to Correspondance A40 is 3 minutes in the AM peak and this improves further to 2 minutes 40 seconds between Correspondance A40 and Rive Sud. In the Inter Peak period the peak headway is 7 minutes and 30 seconds from Bois Franc to Gare Centrale and this increase to 5 minutes between Gare Centrale and Rive Sud). Therefore, the REM network will provide a new, direct and frequent transit alternative to users with an origin or a destination within the 2 branches of the U-shaped Orange Line as shown in Figure 2.2.

Note: Map includes potential station locations

2.9 In summary, REM will not only provide an additional service to critical corridors in the Métropolitan area (Deux-Montagnes, Rive-Sud, Sainte-Anne-de-Bellevue and Aéroport Pierre-Elliott-Trudeau), but it will also provide a new alternative to the Métro Orange Line to access Downtown Montréal.

Park & Ride network

2.10 Another change brought about as a result of the introduction of the REM network is changes to the Park & Ride provision. Table 2.3 provides a summary of the current and future Park & Ride provision for the REM network.

Table 2.3: Park & Ride Assumptions

Stations	Current Capacity	REM Capacity
Gare Centrale	0	0
Canora	0	0
Mont-Royal	0	0
Correspondance A40	-	0
Montpellier	0	0
Du Ruisseau	1,063	1,060
Bois-Franc	742	740
Sunnybrooke	515	400
Roxboro-Pierrefonds	918	1,040
Île-Bigras	65	45
Sainte-Dorothée	1,101	975
Grand-Moulin	304	230
Deux-Montagnes	1,256	1,160
Île-des-Soeurs	-	0
Panama	962	700
Du Quartier	-	0
Rive-Sud	-	3,000
Autoroute 13	-	500
Des Sources	-	500
Pointe-Claire	-	700
Kirkland	-	500
Sainte-Anne-De-Bellevue	-	2,000
Technoparc Saint-Laurent	-	0
Aéroport Pierre-Elliott-Trudeau	-	0
TOTAL	6,926	13,550

Source: CDPQ technical team and AMT 2015 annual report

Rail Network Reorganisation

2.11 The introduction of REM will result in the following changes to the rail network:

- Deux-Montagnes existing rail service will cease to operate and will be replaced by the REM
- Mascouche Line will be terminated at Correspondance A40 station and will cease to provide service to Gare Centrale. An additional REM service from A40 has been introduced in the operating plan in order to cover this demand and ensure full integration and capacity of the system (see Table 2.2).

Bus Network Reorganization

2.12 The introduction of REM will be complemented with a full reorganization of the transit network in the South Shore/A10 and the West Island/Deux-Montagnes Corridors. The extent of the bus reorganization has been defined by the Agence métropolitaine de transport (AMT) in collaboration with the various Conseil intermunicipal de transport (CITs) and Société de transport de Montréal (STM) in order to optimize the system by avoiding duplication of services, and increasing the network coverage and service levels. This section summarizes the future bus network reorganization assumptions.

South Shore/A10 Corridor

- 2.13 The South Shore bus network reorganisation is based on assumptions developed by AMT in February 2016. The main objective of the reorganization is to truncate all express bus services that currently cross the Champlain Bridge, in order not to duplicate services and eliminate bus traffic on the Bridge. The approach adopted by AMT was to terminate these services in the most accessible REM station.
- 2.14 Since February 2016, the definition of the REM alignment and the location of some of the stations has been optimized. At the time of writing this report, AMT has not been able to account for the optimized REM network, therefore, adjustments to the original AMT assumptions have had to be undertaken. The key assumptions include:
 - Station Assumptions
 - Our approach has been to maintain AMT assumptions, unless the terminal station had been modified with the new scope of REM. Table 2.4 summarises the key changes in stations since February 2016, which has been the basis for our adjustments.

Initial REM Assumptions (basis for AMT restructuring proposal)	Current REM Design
Grande-Allée	Rive-Sud
Du Quartier	Du Quartier
Chevrier	Chevrier (potential) - not included in scope
Panama	Panama
Île-des-Soeurs	Île-des-Soeurs
Saint-Patrick	Du Havre (potential) - not included in- scope
Griffintown	Griffintown (potential) - not included in- scope
De la Cathédrale	Gare Centrale

Table 2.4: REM Station Changes

Note: Stations might not be at exactly the same location.

- When no information was available for a specific service between the South Shore and Centre-Ville, it has been assumed that the service will be truncated, terminating at the closest REM station¹.
- Level of service:
 - There are gaps in the AMT plan with regards to the level of service during the off-peak period. It has been assumed that headways will remain as current.

West Island/Deux-Montagnes Line

- 2.15 Assumptions regarding the West Island bus network reorganisation are based on the preliminary assumptions provided by STM in September 2016. The approach was to develop a new feeder bus system for the West Island that avoids duplication of services and is better integrated with the REM.
- 2.16 The following summarizes Steer Davies Gleave's understanding of the STM proposed bus network reorganisation:

• Route assumptions:

- Most routes are maintained with some alignment modifications that better serve existing communities and feed the REM service.
- 17 services are deleted (8 of them are express services) and 14 new services are created. These new services directly feed REM.
- Level of service:
 - For most of the remaining services, levels of service during peak periods increase and stay relatively the same during the inter peak.
 - Levels of service for the new routes during the peak period are high and similar to current express services headways (lower than 12 minutes and average of 8 minutes).
- 2.17 STM did not provide Inter Peak frequencies for the new routes. A factor based on current peak and inter peak levels of service in the West Island has been assumed. Table 2.5 shows the changes introduced to Express services.

¹ This assumption might impact parking demand and number of bus terminals required for each station.

Express routes in Scope	Route deleted in 2021	Current Connections to Deux-Montages Line (DM) and Orange Line (OL)	Assumed connections with REM in 2021	Assumed connections with the Orange Line in 2021	Daily demand (October 2015)
401	YES	None	None	None	277
405	YES	None	None	None	2,495
407	NO	Roxboro-Pierrefonds (DM)	Roxboro- Pierrefonds & Pointe-Claire	None	414
409	YES	Du College (OL)	None	None	1,442
411	YES	Lionel-Groulx (OL)	None	None	1,333
419	NO	None	Sainte-Anne-de- Bellevue, Kirkland & Pointe-Claire	None	1,929
425	YES	None	None	None	1,053
460	NO	Du College Sud (OL) & Crémazie (OL)	Technoparc Saint- Laurent	Du College Sud & Crémazie	7,192
468	YES	Roxboro-Pierrefonds (DM)	None	None	2,715
470	NO	Côte-Vertu (OL)	Pointe-Claire & Des Sources	Côte-Vertu	10,701
475	YES	Côte-Vertu (OL)	None	None	374
485	YES	Lionel-Groulx (OL)	None	None	2,090
491	NO	Lionel-Groulx (OL)	None	Lionel-Groulx	2,106
495	NO	None	Aéroport Pierre- Elliott-Trudeau	None	2,977
496	NO	Lionel-Groulx (OL)	Aéroport Pierre- Elliott-Trudeau	Lionel-Groulx	4,306
Total					41,404

Table 2.5: West Island Express Service Modifications

2.18 As previously mentioned, STM's future network in the West Island is designed to feed REM. 46 routes of 55 have a connection with at least one REM station and 13 of them connect with 2 or more stations. Table 2.6 summarizes the number of routes that serve each REM station in West Island.

Réseau électrique métropolitain (REM) | REM Forecasting Report

Table 2.6: Bus connections with REM stations (2021)

Station	Number of connections at each station
Roxboro-Pierrefonds	6
Sunnybrooke	2
Bois-Franc	3
Du Ruisseau	4
Montpellier	4
Correspondence A40	3
Mont-Royal	2
Canora	1
Autoroute 13	5
Des Sources	4
Pointe-Claire	13
Kirkland	4
Sainte-Anne-de-Bellevue	4
Technoparc Saint-Laurent	2
Aéroport	5
total	62

Note: There are more connections than bus routes in the West Island because some routes have multiples connections to REM.

2.19 STM also operates 747 Express Airport Shuttle. However, it has not provided any assumption for the level of service when the REM starts operation, which will have a significant impact in ridership on the Aéroport Pierre-Elliott-Trudeau branch. For the base case, as requested by the client, it has assumed that this service will be eliminated from service.

Fare Assumptions

- 2.20 It is expected that the current fare structure will remain in place and the REM will be fully integrated into Greater Montréal's fare structure.
- 2.21 The only major modification would be related to the REM airport branche, where fares have been assumed to be \$5 higher compared to the current 747 average fare.

3 Current situation

Background

3.1 The REM project will transform the transit offer in the Greater Montréal Area, by providing a new efficient, frequent and reliable service between the South Shore, Downtown Montréal, the West Island, City of Deux-Montagnes and the Aéroport Pierre-Elliott-Trudeau (ADM).

Figure 3.1: REM project

3.2

Although REM will be fully integrated, it will service three very different markets:

- South Shore/A10: clearly dominated by a commuting demand which is very high in the AM peak in the Montréal direction. This demand is currently served by express bus services that cross the Champlain Bridge using dedicated bus lanes.
- West Island/Deux-Montagnes Line: similar to the above, this is a very strong commuting • market. However this demand is served by a variety of services, including rail services and express and local bus services that feed the Orange Line into Montréal.
- Airport: very specific demand driven by the Aéroport Pierre-Elliott-Trudeau activity, with a flatter daily profile and peak in the afternoon between 3pm and 6pm.
- 3.3 This section describes the characteristics of each of these markets, the existing demand patterns for transit and auto, how this demand is currently served by the transport network and current transit fares. We discuss each market separately by auto and transit mode in the following sections.

South Shore/A10 Market

Introduction

- 3.4 The REM will provide a frequent and reliable rail link between the South Shore and Downtown Montréal (as well as the rest of the West Island corridor and the airport corridor).
- 3.5 The South Shore is the general term for the suburbs of Montreal located on the southern shore of the Saint Lawrence River opposite the Island of Montreal. It includes 26 municipalities and covers 1640.05km². With a total population of 919,000 residents, the South Shore represents 23% of the population in the Greater Montréal. Near half of the population of the South Shore is located in Longueil agglomeration which includes the cities of Longueil, Brossard, Boucherville, Saint-Bruno-de-Montarville and Saint-Lambert. According to the most recent estimates from the Institut de la Statistique du Québec, the demographic growth rate in the South Shore is greater than on the Island of Montréal. The population is expected to gain 127,950 new residents by 2031².
- 3.6 In 2011, 298,200 jobs (16 % of the employment of the Greater Montréal region) were located in the South Shore while more than two third of the total employment (1,86 million) is located on the Island of Montreal. With more than 250,000 jobs within less than 18km², Downtown Montreal is the biggest employment hub of the region and the province³.
- 3.7 As a result, there is a very strong commuter-driven demand between the South Shore and the Montréal downtown area, with high peaks in the AM peak towards Montréal and in the PM peak towards the South Shore.
- 3.8 Given the natural barrier of the Saint Lawrence river, the river crossing alternatives are limited and as a result the South Shore/A10 is one of the highest demand corridors in the region for auto and transit users. We describe the existing auto and transit users and current transport provision in the following sections.

Auto Users

- 3.9 There are limited crossings across the St Lawrence River, which results in bottlenecks to access Downtown Montréal at these locations, especially during the peak periods.
- 3.10 Figure 3-2 shows the most important five crossings from the South Shore.

² Communauté métropolitaine de Montréal. 2016. Portrait of Greater Montréal. Issue N°5, p.41.

³ Ville de Montréal. 2013. *Analyse économique: L'emploi à Montréal de 1981 à 2011*, p.2

Figure 3-2: Saint-Laurent River Crossings

Source: Steer Davies Gleave

3.11 The Champlain Bridge carries approximately 28% of the total traffic crossing to/from South Shore. Although there is a strong component of commuting traffic heading to Downtown Montréal during the AM period, Table 3-1 also shows significant demand levels in the Inter Peak period.

Screenline Num.	Name	Direction	6am-9am (3 hours)	9am-3pm (6 hours)
1	Louis Hippolyte Lafontaine tunnel (A25)	To Montréal	13,364	19,939
		From Montréal	11,450	20,830
2	Jacques Cartier Bridge (R134)	To Montréal	12,757	13,863
		From Montréal	5,530	12,663
3	Victoria Bridge (R112)	To Montréal	6,765	4,043
		From Montréal	-	3,697
4	Champlain Bridge (A10)	To Montréal	17,046	17,956
		From Montréal	6,750	18,003
5	Honoré Mercier Bridge(R138)	To Montréal	7,285	9,040
		From Montréal	3,152	8,803
	TOTAL	To Montréal	57,217	64,841
		From Montréal	26,882	63,996

Table 3-1: 2013 Saint-Laurent River crossing traffic volumes

Source: MTMDET and Steer Davies Gleave analysis

Transit Users

- 3.12 Transit options are also limited to the limited crossings along the St Lawrence River. The key existing transit options are shown in Figure 3-3 and summarized below:
 - Express Bus services
 - **South Shore/A10**: is the key transit corridor to access Montréal island by bus, with more than 48 bus routes providing services from the South Shore to Downtown Montreal (Terminus centre-ville).
 - **Other bus services**: There are other bus routes that use alternative crossings. However these routes service areas away from the REM area of influence and present a much lower levels of service:
 - Honoré-Mercier Bridge: 15 routes
 - Jacques Cartier Bridge: 3 routes
 - Tunnel L-H La Fontaine: 1 route
 - Victoria Bridge: 1 route
 - *Métro Yellow line*: Provides a reliable transit service between Longueuil and Downtown Montréal. Travel time between Longueuil–Université-de-Sherbrooke station and Berri/UQAM station is 9 minutes, whereas travel time to Bonaventure station is approximately 17 minutes. The Line has a frequency of 5 minutes during the AM peak period.
 - *Mont-Saint-Hilaire:* This AMT commuter rail Line provides a direct service to Downtown Montréal (Gare Centrale) from Mont-Saint-Hilaire. Six of the seven stations are located on the South Shore. Travel time from Mont-Saint-Hilaire to Gare Centrale is 50 minutes, whereas travel time from Saint-Lambert station, which is the last station before Montréal, is 11 minutes. This commuter rail runs every 25 to 30 minutes in the AM peak period.

South Shore/A10 corridor

3.13 The transit demand in the **South Shore/A10 corridor** is currently served by 48 bus routes operated by different transit service providers. These routes provide direct access to Downtown Montréal from different areas within the South Shore, providing very good transit coverage. The operator with greatest demand is RTL (shown in dark green in Figure 3-4) that provides service to the Agglomération de Longueuil.

Source: Agence métropolitaine de transport

- 3.14 These 48 routes provide a combined frequency over the Champlain Bridge of approximately 200 services in the AM peak hour. However, this frequency drops to approximately 21 services in the Inter Peak period (9am–3pm), which clearly shows that the service is driven by the commuter needs of residents of the South Shore.
- 3.15 These express bus services provide very competitive travel times in the peaks (despite high levels of congestion on Champlain Bridge) as transit services use segregated bus lanes across the bridge. As a result, travel times only increase from 19 minutes in the Inter Peak direction to 24 minutes in the peak direction.
- 3.16 The competitiveness and convenience of the South Shore/A10 transit corridor has encouraged the use of transit, presenting very high transit market share compared to other corridors. Table 3-2 presents the demand in the corridor per transit agency and for those bus routes that cross the Bridge to access Downtown Montréal.

Réseau électrique métropolitain (REM) | REM Forecasting Report

Transit agency	Peak (6am-9am)	Inter Peak (9am-3pm)
RTL	9,557	6,399
AMT	2,768	783
Ville de Saint-Jean-sur- Richelieu	1,336	958
CITLR	2,025	476
CITVR	149	64
CITCRC	1,577	286
CITROUS	875	214
OMITSJU	481	20
total	18,287	9,180

Table 3-2: South Shore/A10 corridor demand (October weekday in 2015)

Source: Steer Davies Gleave analysis based on data from RTL, AMT, Ville de Saint-Jean-sur-Richelieu, Gestrans and OMITSJU

3.17 Within the South Shore/A10 transit corridor, Park & Ride facilities are provided at the critical transit interchange stations. Currently Panama and Chevrier stations have a total capacity of 3,275 spaces (see Table 3-3). These facilities are currently free of charge and are typically at full capacity from early in the AM peak which suggests that there is unsatisfied demand due to parking capacity constraints.

Table 3-3: South Shore Park & Ride spaces and occupancy (2015)

Location	Size	Occupancy
Panama	962	100%
Chevrier	2,313	89%
Total	3,275	92%

Source: Agence métropolitaine de transport.2015. Rapport annuel de 2015

West Island/Deux-Montagnes Line Market

Introduction

- 3.18 The REM will provide a frequent and reliable rail link between the West Island/Deux-Montagnes Line and Downtown Montréal (as well as the South Shore/A10). It will not only improve the service currently provided by the Deux-Montagnes Line, but it will also extend its alignment to the Point Claire and Sainte-Anne-de-Bellevue areas.
- 3.19 The West Island is the unofficial name given to the cities, towns and boroughs at the western end of the Island of Montreal. It is a large territory of low-density middle and upper-middle class housing, and low and medium density commercial sectors. In 2011, the total population of West Island was approximately 236,000 residents⁴. The second biggest employment hub (Saint-Laurent/Dorval) in Greater Montréal is located in the West Island. This hub counts more than

⁴ Communauté métropolitaine de Montréal. 2016. *Portrait of Greater Montréal*. Issue N°5, p.41. This excludes Saint-Laurent borough and the borough to its northern and eastern end.

190,000 jobs and is home to the Aéroport Pierre-Elliott-Trudeau, John Abbott College, Cégep Gérald-Godin, the Macdonald Campus of McGill University, the Fairview Pointe-Claire and Galeries des Sources malls, STM Fairview bus Terminal, as well as Montreal's largest park, the Cap-Saint-Jacques Nature Park.

- 3.20 The Deux-Montagnes Line crosses part of the West Island, Laval, and ends in the North Shore in the City of Deux-Montagnes. Residential areas along the Deux-Montagnes Line, especially in the North Shore are among the fastest growing in terms of population in the region. In 2011, the North Shore had 208,400 jobs which equates to 11.6% of the total employment in the Greater Montréal region⁵.
- 3.21 As a result, there is a very strong commuter-driven demand between the West Island/Deux -Montagnes corridor and the Downtown Montréal area, with high peaks in the AM towards Montréal and in the PM in the reverse direction.

Auto Users

- 3.22 The REM Line will operate in parallel with the A40 for a great part of its alignment, although the A20 could also be an alternative for some of the destinations.
- 3.23 In order to understand the auto demand in the West Island/Deux-Montagnes Line corridor, two screenlines have been created that include the Autoroute Du Souvenir (commonly called A20) and Autoroute Felix-Leclerc (A40):
 - Screenline 1 is located between Pointe-Claire and Des Sources stations along Autoroute Felix-Leclerc and Autoroute du Souvenir.
 - Screenline 2 is positioned between Des Sources and Autoroute 13 stations.
- 3.24 Total traffic volumes from the two screenlines by direction are detailed in Table 3-4. The location of the screenlines is shown in Figure 3-5.

⁵ Ville de Montréal. 2013. Analyse économique: L'emploi à Montréal de 1981 à 2011, p.2

Figure 3-5: West Island auto screenlines

3.25 Traffic volumes peak between 6am to 9am heading into the Montréal area, as a result of the high proportion of commuting traffic. Screenline 2, which lies closer to Downtown Montréal displays significantly higher traffic volumes (approximately twice as high) as Screenline 1.

Direction	Screenline 1		Screenline 2	
	6am-9am	9:00 am to 15:00 pm	6am-9am	9:00 am to 15:00 pm
To Montréal	21,893	26,476	43,385	55,860
Towards West	10,489	23,818	19,424	42,008

Table 3-4: West Island corridor traffic demand (2013)

Source: MTMDET

Transit Users

3.26 The West Island of Montréal covers a very large area. To cater for this demand, there is an extensive transit network of; commuting rail (Deux-Montagnes Line and Vaudreuil-Hudson Line) and bus services, that provide access to Downtown Montréal either directly or via the Orange Line.

Rail Network

3.27 The West Island/Deux-Montagnes Line Corridor is currently served by two rail commuting services and one Métro Line as shown in Figure 3-6.

- **Deux-Montagne Line** is currently owned and operated by AMT. Although services are relatively fast, the frequencies are poor with three services per hour in the peak and less than one service per hour in the Inter Peak period.
- Vaudreuil-Hudson Line provides services in the southern part of the West Island/Deux-Montagnes Line Corridor. At present, the Vaudreuil-Hudson Line operates at or near capacity during peak hours and offers a very limited service during off-peak hours. In addition to a relatively early termination of service in the evening, current priority of freight transport over commuter traffic limits expansion of services along the southern rail corridor.
- 3.28 The *Métro Orange Line* is a key component of the existing transit network, since many of the express and local buses in the West Island terminate at an Orange Line station which provides access to Downtown Montréal and the Métro network. The Orange Line provides services every 4 minutes during the morning peak period (every 8 minutes during the off-peak period) and travel times are relatively long due to the high number of stations (average speed of 40km/h). Moreover, the eastern branch of the service is currently congested in the peak hour.
- 3.29 Although they do not operate directly in the West Island/Deux-Montagnes Line Corridor, the following rail services are also relevant to the study since they can feed demand to REM.
 - The *Mascouche Line*, which currently provides direct access to Gare Centrale using the Mount Royal tunnel, will terminate in future at a station near Autoroute 40 and is expected to feed demand to the REM network. This service started operation in 2014, and currently has 13 stops and offers 8 departures in each direction on weekdays, mainly during the peak hour.
 - The *Saint-Jérôme Line*, which currently terminates at Lucien L'Allier, could also potentially feed demand to the REM network if it is integrated. The current Mount Royal tunnel and Gare Centrale conditions do not allow the Saint-Jérôme Line to use the tunnel and it has to detour 20 minutes via Lachine. However, this rail Line provides three connections with the Métro network De La Concorde station in Laval (Orange line), Parc (Blue line) and Lucien L'Allier (Orange line). The frequency of service is every 25–45 minutes during the peak hour and one service every two hours outside of the peak hour, of which five services continue to, or begin at, Lucien-L'Allier station. All other trips begin or end at Parc Métro station.
- 3.30 Figure 3-6 shows the rail and Métro Line alignments and stations on the West Island/Deux-Montagnes Line Corridor.

Figure 3-6: Rail and Métro network in the West Island/Deux-Montagnes Line Corridor

3.31 Currently, the Deux-Montagne Line (DM) has the highest ridership, with almost 32,000 daily riders. Table 3-5 shows that most of the rail services have a strong component of commuting demand, with majority of demand in the peak periods.

AMT commuter rail	6am-9am	9am-3pm	Daily
Deux-Montagnes Line	14,371	4,580	31,835
Vaudreuil-Hudson Line	8,450	1,238	17,588
Mascouche Line	2,421	199	4,905
Saint-Jérôme Line	6,792	1,068	13,709

Table 3-5: AMT average ridership (2015)

Source: Agence Métropolitaine de Transport

3.32 Figure 3-7 shows the boardings and alightings of the DM Line per station for the AM peak. Figure shows the majority of demand alights at Gare Centrale with very limited activity at intermediate stations. The peak load is around 12,000 passengers in the AM peak hour.

Figure 3-7: Deux-Montagnes Line AM Peak Profile (Sept 11th 2014) - Towards Downtown Montréal

Source: AMT

Bus Network

- 3.33 STM is the main bus service provider in the western part of the Island of Montréal. It operates 53 in-scope bus services, which cover both express and local services.
- 3.34 Table 3-6 presents the demand for each type of bus route and for an average weekday in October 2015. The express routes have higher demand in the peak period, as expected, while the nonexpress routes have higher demand in the off-peak period due to shorter trips on these services.

	Peak (6am-9am)	Inter Peak (9am-3pm)	Daily
Express routes in scope	12,580	10,611	41,404
Non-express routes in scope	42,392	50,902	174,782
747*	493	1,730	5,304
Total	55,465	63,242	221,490

Table 3-6: West Island/Deux-Montagnes Line Bus Demand (October 2015 weekday)

Source: STM and Steer Davies Gleave analysis

* 747 is the express service to the Aéroport Pierre-Elliott-Trudeau: More details are provided in the airport section

3.35 The express routes currently provide longer distance services with a lower number of stops. Some routes terminate at an interchange station, mainly with the Orange Line or at Terminus Fairview. Table 3.7 shows the demand for each of the express routes in the West Island/Deux-Montagnes Line corridor, as well as their key connections with other rail modes to access Downtown Montréal. Some of the areas served by these routes in the future will be covered by the REM network or they will feed passengers to REM stations with minor modifications to their layout:

Express routes in Scope	Current Connections	Assumed connections with REM	Peak (6am-9am)	Off-peak (9am- 3pm)	Daily demand
401	None	None	106	-	277
405	None	None	609	1,004	2,495
407*	Roxboro- Pierrefonds (DM)	Roxboro- Pierrefonds & Pointe-Claire	185	-	414
409	Du College (OL)	None	650	147	1,442
411	Lionel-Groulx (OL)	None	516	395	1,333
419*	None	Sainte-Anne-de- Bellevue, Kirkland & Pointe-Claire	495	815	1,929
425	None	None	258	377	1,053
460*	Du College Sud (OL)	Technoparc Saint-Laurent	3,049	411	7,192
468	Roxboro- Pierrefonds (DM)	None	811	1,018	2,715
470*	Côte-Vertu (OL)	Pointe-Claire & Des Sources	2,241	3,267	10,701
475	Côte-Vertu (OL)	None	235	24	374
485	Lionel-Groulx (OL)	None	548	723	2,090
491*	Lionel-Groulx (OL)	None	798	512	2,106
495*	None	Aéroport Pierre- Elliott-Trudeau	697	874	2,977
496*	Lionel-Groulx (OL)	Aéroport Pirre- Elliott-Truedeau	1,380	1,045	4,306
Total			12,578	10,612	41,404

Table 3.7: Express Service Demand in the West Island of Montréal (October 15 weekday)

Note: Routes without asterisks are not in service in 2021. They are replaced by 14 new services serving REM stations

Park & Ride Facilities

3.36 In the West Island/Deux-Montagnes Corridor, many of the rail stations currently have Park & Ride facilities. Stations on the Deux-Montagnes Line provide a total capacity of 5,964 spaces (see Table 3.8). These facilities are currently free of charge and are typically at full capacity from the early peak hour period (average occupancy of 91%), which suggests that there is unsatisfied demand due to the capacity constraints of the car parks.

Deux-Montagnes Line	Size (and occupancy)	Occupancy
Du Ruisseau	1063	82%
Bois-Franc	742	91%
Sunnybrooke	515	98%
Roxboro– Pierrefonds	918	92%
Île-Bigras	65	99%
Sainte-Dorothée	1,101	92%
Grand-Moulin	304	96%
Deux-Montagnes	1256	92%
Total	5,964	91%

Table 3.8: West Island/Deux Montagnes Park & Ride sites

Source: AMT Annual Report

Aéroport Pierre-Elliott-Trudeau Market

Introduction

- 3.37 The REM will provide frequent and reliable access to/from Aéroport Pierre-Elliott-Trudeau for air passengers and staff travelling from the South Shore, Downtown Montréal, the West Island and Deux-Montagnes. At the moment, the majority of people drive and park at the airport. There is also a significant number of people who are driven to the airport either by a friend/family member or in a taxi.
- 3.38 The only current public transport option is the 747 bus route operated by STM. The 747 service runs 24 hours a day, 7 days a week, between Aéroport Pierre-Elliott-Trudeau and Berri/UQAM Métro station, east of Downtown Montréal. Frequencies vary through the day, from one bus every 7-10 minutes to two buses per hour. The 747 bus route is shown in Figure 3.8.
- 3.39 The total end to end travel time ranges from 45 minutes to 60 minutes, depending on traffic conditions. Travel times particularly vary on the A20 and on René-Lévesque, the main road through Downtown Montréal.

Source : STM Website (http://www.stm.info/en/info/networks/bus/shuttle/more-about-747-aeroport-p-e-trudeau-centre-ville-shuttle)

Demand

- 3.40 Demand for travel to the Aéroport Pierre-Elliott-Trudeau includes:
 - Aéroport Pierre-Elliott-Trudeau passenger demand; and
 - Aéroport Pierre-Elliott-Trudeau staff demand
- 3.41 Aéroport Pierre-Elliott-Trudeau passenger demand is based on the actual number of air passengers flying into or out of Aéroport Pierre-Elliott-Trudeau using information directly from Aéroports de Montréal (ADM).
- 3.42 This demand has been estimated differently from the rest of the transit network demand in order to include passengers who currently travel by car (either Park & Fly, Kiss & Fly or take a taxi). We consider that for the airport, these car drivers/passengers are 'in-scope' to possibly switch to REM, as well as bus users who are considered to be the primary target for REM.
- 3.43 The total passenger demand for the airport is estimated to be 15.5 million passengers in 2015. This includes:
 - 5.87 million passengers on Domestic flights
 - 3.70 million passengers on Transborder flights
 - 5.93 million passengers on International flights
- 3.44 Clearly not all Airport passengers could use REM for their journey to/from the Aéroport Pierre-Elliott-Trudeau. Some passengers were excluded from our analysis for the following reasons:
 - Passengers who are using Aéroport Pierre-Elliott-Trudeau to connect to another flight and do not leave the Airport (18%).
 - Passengers who were arriving/leaving the Aéroport Pierre-Elliott-Trudeau while REM is not in operation (e.g. in the middle of the night) (7%).

- 3.45 Airport staff demand has also been calculated using information from ADM. This estimated that there were around 27,000 employees in the airport and its hinterland in 2015. ADM also provided details of roles and working patterns, which showed that in 2015, 41% of staff worked 'normal hours', 46% worked long shifts and 13% were pilots or cabin crew.
- 3.46 In order to convert the number of employees in to the number of trips to/from the Aéroport Pierre-Elliott-Trudeau, we made the following assumptions:
 - Each Airport employee works 46 weeks per year.
 - Employees who work normal working hours travel to or from the Airport 10 times a week.
 - Employees who work long shifts travel to or from the Airport 6 times a week.
 - Pilots and cabin crew travel to or from the Airport twice a week.
- 3.47 Based on this, we estimated employees in the airport area made 8.8 million trips to/from the Aéroport Pierre-Elliott-Trudeau in 2015. As with Airport passengers, we also excluded Airport staff who:
 - Travelled to/from the Aéroport Pierre-Elliott-Trudeau outside REM operating hours (7%)
 - Live outside the Montréal area (3%)
- 3.48 In order to improve the mode choice preferences by market segment in the model, we have developed a number of market segmentations of the air passenger and Airport staff demand. The market segmentations have been generally estimated from ADM surveys.

Distribution of demand

- 3.49 The Airport model includes a number of different levels of segmentation. This allows us to have different profiles for different types of people. The profiles determine how likely someone is to switch to REM given their current travel time (which includes walk time, wait time, in vehicle travel time and fare (if they use public transport).
- 3.50 Our segmentation is explained below:
 - Spatial segmentation: We developed a zoning system of 68 zones across Montréal and distributed Airport passengers and staff so that each person travels between the Airport and one of these zones. Our segregation varies for:
 - Airport passenger residents: based on the demand distribution in the EMME model
 - Airport passenger non-residents: based on the Steer Davies Gleave 2016 Airport survey
 - Airport staff: based on the ADM 2008 staff survey.
 - Passenger type segmentation based on the ADM surface access survey. This includes:
 - Splitting passengers by their current mode of transport to/from the Aéroport Pierre-Elliott-Trudeau (including Bus, Taxi, Car Park & Fly and Car Kiss & Fly.)
 - Residents of Montréal and non-residents
 - Purpose of travel: Business and non-business.
 - Whether passengers are travelling alone or in a group

- Time of travel: AM peak (3 hours 6am to 9am) and Inter Peak (6 hours 9am to 3pm)⁶
- Staff type segmentation based on the 2008 ADM staff survey. This includes:
 - Splitting staff by their current mode of transport to/from the Aéroport Pierre-Elliott-Trudeau (including Bus and Car Park & Fly)
 - Time of travel: AM peak and Off-Peak⁶
- 3.51 Table 3.9 provides a summary of total airport passengers demand by market segment in the AM Peak and Interpeak periods.

		Bus	Taxi	Car Park & Fly	Car Kiss & Fly
Time of Day	AM peak (6am- 9am)	493	1,362	1,072	1,973
	Inter peak (9am- 3pm)	1,730	3,234	1,502	4,456
Journey purpose	Business	509	1,824	1,007	922
	Non Business	1,715	2,772	1,567	5,507
Residency	Non-resident	342	966	57	686
	Resident	1,881	3,630	2,517	5,743
Group size	Alone	1,917	2,868	1,814	3,743
	In a group	306	1,728	760	2,687
Total		2,223	4,596	2,574	6,429

Table 3.9: 2015 In-scope airport passenger demand by market segment- AM peak and Interpeak periods

Existing 747 bus demand

3.52 The main transit access to the Aéroport Pierre-Elliott-Trudeau is the 747 shuttle service. This service registered an average daily demand of 5,300 passengers for an average weekday in October 2015 (493 passengers in the AM peak and 1,730 in the interpeak). The peak demand for this service occurs between 2pm and 5 pm, which partially overlaps with the commuting PM peak. Figure 3-9 shows the hourly profile of the service

⁶ Only AM peak and Inter Peak travel modelled in detail. The PM peak is included in our annualisation factors of the AM and Inter Peak results

Source: STM

3.53 As shown in Table 3-10, the hourly demand in the AM peak period is much lower than the Inter Peak hour demand.

Table 3-10: 747 demand (October 2015 weekday)

Route	ute Peak (6am-9am) Inter peak (9am-3					
747	493	1,730				
Source: STM						

steer davies gleave

Réseau électrique métropolitain (REM) | REM Forecasting Report

3.54 Figure 3-10 shows the boardings and alightings of the 747 bus service per stops and direction. Most users board at Lionel-Groulx Métro station. It is observed, that very few people board or alight in the heart of downtown on René-Lévesque.

Figure 3-10: Average 747 Daily Boardings and Alightings per Stop (March-June 2015)

Source: STM, Steer Davies Gleave analysis

Eastbound (from Aéroport Pierre-Elliott-Trudeau)

Source: STM, Steer Davies Gleave analysis

Existing Fares

3.55 The REM area of influence is covered by the AMT TRAM integrated ticketing structure, which allows passengers to use the whole transit network in the Montréal Region. AMT fares are classified according to a zoning system of 8 zones. Figure 3.11 shows the fare zone map.

Figure 3.11: AMT Fare Zone Map (August 2016)

- 3.56 AMT has a wide range of products and concessions, with fares differentiated by⁷:
 - **Zones**: Fares differ depending on the origin and destination of the trip according to the 8 zone system
 - **Type of user**: Fares are split into regular (*ordinaire*), reduced (*réduit*) and student (*étudiant*)
 - **Mode**: There are different products available depending on the mode used; TRAM (Commuter rail, bus and Métro) and TRAIN (Commuter rail only)
 - **Products**: Tickets are available for different frequency users; monthly (*mensuel*), 6-ticket booklets (*carnet*) and individual tickets (*billet*)
- 3.57 Table 3.11 shows the average fare estimated for each zone for adults and students.

⁷ https://www.amt.qc.ca/fr/titres-tarifs/titres-Métropolitains

ADULT Zone	SINGLE TICKET	TRAM Fare 6-TICKET BOOKLET	MONTHLY FARE	SINGLE TICKET	TRAIN Fare 6-TICKET BOOKLET	MONTHLY FARE	AVERAGE ADULT
1	\$4.43	\$2.83	\$1.92	\$3.91	\$2.51	\$1.75	\$2.01
2	\$5.44	\$3.30	\$2.33	\$4.40	\$3.01	\$2.06	\$2.38
3	\$6.37	\$3.96	\$2.77	\$5.38	\$3.56	\$2.45	\$2.77
4	-	-	\$2.95	\$5.91	\$3.84	\$2.67	\$3.02
5	-	-	\$3.45	\$6.89	\$4.48	\$3.09	\$3.47
6	-	-	\$4.12	\$8.38	\$5.44	\$3.71	\$4.14
7	-	-	\$4.82	\$9.57	\$6.16	\$4.20	\$5.19

Table 3.11: Average fare - AMT Adults (2015 \$)

Table 3.12: Average fare – AMT Students (2015 \$)

STUDENT		TRAM Fare			TRAIN Fare		
Zone	SINGLE TICKET	6-TICKET BOOKLET	MONTHLY FARE	SINGLE TICKET	6-TICKET BOOKLET	MONTHLY FARE	AVERAGE STUDENT
1	-	-	\$1.67	-	-	\$1.42	\$1.66
2	-	-	\$1.97	-	-	\$1.67	\$1.95
3	-	-	\$2.34	-	-	\$2.00	\$2.34
4	-	-	\$2.52	-	-	\$2.15	\$2.52
5	-	-	\$2.93	-	-	\$2.50	\$2.92
6	-	-	\$3.50	-	-	\$2.98	\$3.49
7	-	-	\$4.02	-	-	\$3.41	\$4.00

* Monthly average fare by trip is based on the assumption of an average usage of 44 trips/ month

** There are only monthly passes with student discount

Source: AMT data and Steer Davies Gleave analysis

3.58 On the South Shore/A10, more than 50% of the total transit demand that cross the Champlain Bridge has an origin or destination within AMT fare zone 3. However, for other areas, in addition to AMT products, there are a number of agencies that also provide products for users that only use that specific transit agency service (products are not integrated with AMT or STM services) including:

- CIT Chambly-Richelieu-Carignan (CITCRC)
- CIT Vallée-du-Richelieu (CITVR)
- OMIT Sainte-Julie (OMITSJU)
- CIT Roussillon (CITROUS)
- CIT Le Richelain (CITLR)
- 3.59 For those areas, the estimated weighted average fare by trip has been estimated based on the distribution of demand per ticket type:

Table 3.13: Average Fares per trip – CIT (2015 \$)

AV FARE	cr	TCRC	C	ITVR	ом	IT-SJU	СІТ	ROUS	C	ITLR
Zone	ADULT	STUDENT								
4									2.65	2.24
5	3.23	2.78	3.71	2.78	3.42	2.78	2.90	2.58	2.71	2.29
6	3.48	3.28	4.25	3.28	3.69	3.27	3.04	2.99	2.75	2.60

Source: CITs data and Steer Davies Gleave analysis

- 3.60 In the Montréal Island area, STM fares apply exclusively to users of the STM transit services (bus and Métro on the Montréal Island) and fares are different to those for AMT. The main characteristics of STM fares are:
 - Flat fee: Montréal Island represents one fare zone, while AMT has 3 fare zones on the island
 - **Type of user**: Fares are split into regular (*ordinaire*) and reduced (*réduit*). Student specific fares are not available and are included within the reduced fares.
 - Mode: Tickets can be used on bus or Métro (and allow transfers between them)
 - **Products**: Tickets are available for different frequency users; monthly (*mensuel*), weekly (*Hebdo*), 3 days (*3 jours*), 1 day (*1 jour*), evening (*soirée illimitée*), weekend (week-end illimité) and 1, 2 and 10 ticket booklets.
- 3.61 In order to estimate the number of trips and average fare for adults and students, the following assumptions have been adopted:
 - Trips for monthly pass holders: 48 trips/month (it is a less commuter-oriented service than AMT and therefore a higher number of monthly trips assumed)
 - Trips for weekly pass holders: 12 trips/week
 - Trips using the 747 service have been excluded
 - Number of student trips within the "discounted" trips: 65% of monthly pass holders This assumption has been based on the observed AMT distribution between students and other discounted monthly pass holders
- 3.62 Table 3.14 shows the average fare estimated for the whole Montréal Island and by ticket type.

Fare	Monthly	Hebdo	single	2 trips	10 trips	TOTAL
Adult	\$1.58	\$2.10	\$3.21	\$2.93	\$2.35	\$1.93
Student	\$1.02	\$1.29	-	-	-	\$1.03

Table 3.14: Average Fare – STM (2015 \$)

- 3.63 It is worth noting that 78% of demand currently uses monthly or weekly passes, with a higher use of single tickets and carnets on AMT, probably related to the higher use of the service by infrequent users such as tourists.
- 3.64 The STM 747 service is the only service that has a different fare structure. The average fare is \$3.15, which has been calculated based on ticket type sales and usage data provided by STM.

Table 3.15: 747 Average Fare Estimate

Ticket Type	Ticket Sales (\$)	Sales Breakdown	Trips per ticket type	Fare
Titres 747	78,104	5.4%	1.10	\$9.00
1 jour	469,272	32.4%	1.72	\$9.00
3 jours	96,596	6.7%	6.73	\$18.00
Weeek-end illimité	17,541	1.2%	5.22	\$12.00
Mensuel ordinaire	552,714	38.2%	48.43	\$77.00
Mensuel réduit	159,386	11.0%	44.24	\$45.00
Hebdomadaire ordinaire	68,083	4.7%	12.75	\$23.75
Hebdomadaire réduit	1,855	0.1%	11.43	\$14.00
Gratuités - Autres	3,975	0.3%	0	\$0
TOTAL	1,447,525	100%	-	-

Source: STM

4 Modelling approach

Overview

4.1 REM will completely transform the transit offer in the Greater Montréal Area. The new system will be complemented by the following interventions:

- Restructuring of the **bus network** in the corridor: with the elimination of the express routes directly competing with REM, the transit agencies will introduce a frequent and improved bus feeder network that will substantially reduce the access and egress time to REM stations.
- Re-structuring of *rail services* in the corridor: REM will substitute the existing Deux-Montagnes commuter rail service, providing an improved service in terms of frequency and travel time. The Mascouche Line will be truncated to feed the REM.
- Improvement of the *interchange facilities* to fully integrate the REM with the rest of the transit network and with new Park & Ride facilities.
- 4.2 As a result, the project as a whole, is expected to have an important impact on:
 - **Corridor demand** (South Shore/A10 and West Island/Deux-Montagnes Line): Existing transit and auto travellers within the area of influence of the REM mainly residents; commuters in the peak periods and non-commuters in the Inter Peak periods.
 - **Airport demand:** Demand to and from the Aéroport Pierre-Elliott-Trudeau, currently using; transit, auto, taxi, Kiss & Fly, etc. This includes both Airport passengers and staff.

Model overview

- 4.3 For this study, we have designed a demand model structure to provide the most practical framework to address the different markets. This has been achieved by optimizing the use of existing information and modelling work, and complementing it with additional data collection and the development of new modelling features.
- 4.4 In order to assess the critical markets, different models have been developed. The models are fully integrated and consistent:
 - **Corridor demand choice model:** In order to estimate REM future demand and capture from alternative modes for the "corridor" demand, two separate models have been developed.
 - Auto shift model: estimates the demand that shifts from auto to transit and REM given the future improved competitiveness of the transit modes compared to auto. This includes two sub-models:
 - Shift from auto to REM with Park & Ride (Park & Ride) access (bi-modaux)

- Shift from auto to REM with transit/walking access
- **Transit mode choice model** estimates the redistribution of demand between the different transit modes (bus, rail, Métro and REM) given the current and future competitiveness for each of the modes.
- 4.5 In addition, the **Airport demand choice model** estimates Airport demand mode choice using a broader variety of competing modes including bus, taxi, Car Park & Fly and Car Kiss & Fly.
- 4.6 An overview of the forecasting model framework is shown below.

Figure 4.1: Forecasting Model Overview

Note: General Transit Feed Specification (GTFS) refer to publicly available transit schedules and routes.

- 4.7 To support all models, a road and transit network has been developed including the following features:
 - Base year (2015) and two future years (2021 and 2031)
 - Two time periods
 - AM Peak: 6 to 9am
 - Inter Peak: 9am to 3pm
- 4.8 REM demand estimates from the Auto Shift Model and Airport Choice Model have been consolidated into the assignment model, in order to calculate total REM demand by station, section loads, etc.

4.9 The following sections describe the network development in more detail and the approach adopted for the Corridor demand choice model.

Network development

Overview

- 4.10 In order to forecast the future demand for the REM, a number of models have been developed to estimate the redistribution of the existing and future demand, within the different modes available. The redistribution is based on the attractiveness of each option.
- 4.11 Given the high level complexity of the road and transit network in Métropolitan Montréal, it was considered that a Network (assignment) Model was required to represent more accurately the complex interaction between the different modes. This has been built in the EMME software package.
- 4.12 Although different models and approaches have been adopted to estimate different types of demand (corridor and Aéroport Pierre-Elliott-Trudeau demand), all models have based the calculation of Generalized Times on the Travel Times and Fares extracted from the Network Model.
- 4.13 The Montréal network is complex and developing a new auto and transit model would be a challenging task that could take many months. In order to provide results within the required timescales, we have relied upon existing models (road network only), which have been adapted and complemented with additional features to represent the transit network characteristics with a particular focus on the REM corridors.
- 4.14 The following sections describe the existing model sources and the additional work carried out to develop an auto and transit model for the study area. A Network Model has been developed for an average fall week day and includes an average hour in the AM peak (defined as 6am-9am) and an average hour in the off-peak period (defined as 9am-3pm).
- 4.15 The Network Model includes a road and a transit network, which are described below.

Road Network

- 4.16 In order to characterize the existing road network, the team has used the MOTREM model, a road transportation model developed for the Montréal region, using the EMME software platform. MOTREM is owned and maintained by MTQ and it was provided to CDPQ for the purposes of this study.
- 4.17 This model has then been upgraded in order to include "bus only lane" links, which are extremely important to define the road characteristics for transit services. This is especially relevant for South Shore/A10 users.

MOTREM

4.18 The MOTREM model includes a very detailed representation of the existing and future road network and produces auto traffic simulations for a range of years (2008, 2016, 2021 and 2031). The model estimates the demand of a typical weekday in the fall and across a 24-hour time period (12am-12pm).

4.19 MOTREM is disaggregated geographically into 1,766 traffic zones. Figure 4.2 shows the detailed zoning system covered in the model.

Figure 4.2: MOTREM zoning system

- 4.20 MOTREM includes auto Origin-Destination (OD) demand matrices for the zones identified above for the base and future years (2008, 2016, 2021 and 2031). The demand matrices are split into four vehicle types; cars, commercial cars, light goods vehicles and heavy good vehicles.
- 4.21 The model road network is represented as nodes, links and zones. Links contain network information such as the number of lanes per direction and the volume delay function (vdf). This function estimates the average speed on that particular link depending on the volume of trafficand could be different depending on the road characteristics, maximum speed limit, etc.
- 4.22 Figure 4.3 shows the extent of the road network in MOTREM.

Figure 4.3: MOTREM road network

- 4.23 The model assigns demand to each route depending on the Generalized Costs associated with each alternative. The MOTREM model was calibrated to a 2008 base year, using the demand OD matrices available from the Enquête 2008 household OD survey, and traffic screenline counts for different vehicle types.
- 4.24 MOTREM assigns auto and goods vehicle demand to the road network via a series of iterations designed to reach convergence or equilibrium based on the Generalized Costs which account for travel time, operating costs and tolls (on the A25 and A30 and not very relevant to REM).

Bus Only Lanes

- 4.25 MOTREM is not a transit model and therefore does not include bus lanes i.e. Champlain Bridge is represented as 3 lanes to Montréal and 2 lanes to the South Shore direction in the AM peak period for example and the bus lane is not included.
- 4.26 Since bus lanes are critical for the existing transit network, especially for demand from the South Shore/A0 corridor, selected bus only lanes have been included in the model and shown in Figure 4.4⁸.

⁸ https://www.amt.qc.ca/en/trip-planner/bus/reserved-lanes

Figure 4.4: Bus only lanes

Future Road network

- 4.27 MOTREM includes a number of road network changes which are detailed in Appendix A.
- 4.28 Of particular interest to this project are the following:
 - Champlain Bridge replacement⁹: construction of new 6 lane bridge across the Saint-Laurent River and access roads to replace existing bridge (currently under construction)
 - Turcot Interchange¹⁰: reconstruction of the interchange for Highways 15, 20 and 720. This
 includes the introduction of reserved bus lanes along Highway 20 (between the St-Pierre and
 Turcot Interchanges), inside lane of the Ville-Marie in the eastbound direction and the new
 Pullman Boulevard.

Transit Network

4.29 Since MOTREM only represents the road network relevant to auto users, it has been necessary to incorporate all the transit network links (rail and Métro) and transit services.

Transit Links

4.30 The current MOTREM model includes a range of modes (link characteristics). These have been maintained in order to retain consistency with MOTREM work done to date. Note that MOTREM

⁹ http://www.newchamplain.ca

¹⁰ https://www.turcot.transports.gouv.qc.ca/en/Pages/default.aspx

includes transit mode variables already even though it is a road-traffic based model (it is presumably a long term aim of MTQ to develop a transit model component of MOTREM).

4.31 Table 4.1 details the various modes included. Note that the only additional that we have incorporated in MOTREM is the inclusion of REM as a specific mode to ensure it can be coded separately and extract relevant statistics more efficiently.

MOTREM Mode	MOTREM Description	MOTREM Type	Comment
а	Automobile	Auto	Main mode for autos and buses
Z	CamLourd	Aux. auto	Mode to allow Heavy Truck link bans
У	CamLeger	Aux. auto	Mode to allow Light Truck link bans
v	AutoPrive	Aux. auto	Mode to allow Private Car link bans
w	AutoComm	Aux. auto	Mode to allow Commercial Veh. link bans
m	Métro	Transit	Métro transit mode
t	Train	Transit	AMT Commuter Rail transit mode
I.	Bus-stl	Transit	RTL bus transit mode
S	Bus-strsm	Transit	STL bus transit mode
b	Bus-stcum	Transit	STM bus transit mode
с	Bus-cit	Transit	CIT bus transit mode
i	Inter-urbn	Transit	Other bus transit mode
r	REM	Transit	REM (new mode)
р	Pieton	Aux. transit	Pedestrian
х	Transfert	Aux. transit	Pedestrian transfer link

Table 4.1: Model Link Modes

Transit Links Coding

- 4.32 Rail and Métro lines have been coded as separate links and stations have been 'connected' to the street network as required.
- 4.33 Bus routes have been coded using, as a base, the road network represented in MOTREM. Transit service route GTFS files were downloaded from the different transit agencies in the Montréal region and imported as transit routes to EMME.
- 4.34 Table 4.2 summarizes the total transit routes downloaded as GTFS files by agency and coded into EMME.

Réseau électrique métropolitain (REM) | REM Forecasting Report

Table 4.2: Transit services coded

Agency	Number of services included
AMT Bus	2
CIRLR	36
CITCRC	33
CITHSL	7
CITROUS	16
CITVR	46
MRC2M	4
RTL	195
Ville de Saint-Jean -sur-Richelieu	16
STL	93
STM	387
OMITSJU	17
Total	852

4.35 Figure 4.5 shows a plot with the routes included in the model and Figure 4.6 shows the transit services by mode.

Figure 4.6: Transit services coded by mode

Future transit network

4.36 No changes have been made to the transit network with the exception of ensuring buses are using the new bus lanes on the Turcot Interchange.

Corridor Demand Choice Models

Model Overview

- 4.37 In order to estimate REM, future demand and capture from alternative modes for the "corridor" demand, two separate choice models have been developed.
 - Auto shift model: estimates the demand that shifts from auto to REM
 - Transit mode choice model: estimates the redistribution of demand between the different transit modes (bus, rail, Métro and REM).

Auto shift model

- 4.38 The auto shift model is integrated within the Network Model (EMME) and estimates the demand that would be captured from auto in the AM peak and Inter Peak periods based on:
 - The *in-scope market*: estimation of the auto traveler demand in the corridor (described in Section 3)
 - The *key benefits of REM* compared to auto: this is measured in terms of Generalized Costs for each particular OD (including time and monetary costs) and period, and is covered in the following sub-sections

- The *auto shift model*: is an incremental binary logit model, where the demand captured by REM is estimated based on the incremental Generalized Costs for auto and transit compared to the existing situation
- 4.39 This model has been developed in the EMME platform (using macros) to ensure consistent car and transit assumptions are applied. The Generalized Cost (including total travel time and cost) for the auto alternative is compared with the best transit alternative Generalized Cost, and this is applied for each Origin-Destination pair for each time period.
- 4.40 It is worth noting that the REM option for auto users presents two potential alternatives:
 - REM with Park & Ride access (bi-modaux)
 - REM with transit/walking access

Transit mode choice model

- 4.41 The transit mode choice model is also integrated within the Network Model (EMME) and estimates the demand that REM could capture from other transit modes based on:
 - The *in-scope market*: estimation of the transit traveler demand in the corridor (Section 3)
 - The *key benefits of REM* compared to other transit modes: this is measured in terms of Generalized Costs per time period (see following sub-sections)
 - The *transit model choice model:* is a transit mode choice and assignment model in EMME where the total transit demand for each OD is assigned to a transit network which represents all the major transit alternatives (Commuter Rail, Métro lines and bus services) and combinations of these modes.
- 4.42 Since the transit capture is expected to be the most relevant component in the REM demand, the transit mode choice has been based on a more detailed segmentation not only by OD pair, but also by type of user, which has been classified by trip purpose (work, student and other).

Generalized Cost

- 4.43 The mode choice model assigns the demand to the different mode alternatives based on the Generalized Costs associated to each of them. The Generalized Cost does not relate strictly to monetary cost, but instead incorporates a wide array of journey attributes (such as in-vehicle travel times, access times and costs, transfers, wait times, etc.) all of which are combined with different weighting factors depending on user preferences.
- 4.44 The key attributes for *transit users* include:
 - Fare of the trip (in 2015 Canadian Dollars): this represents the monetary component of the cost, and includes the average fare paid by each type of user (adult/student) from origin to destination.
 - **In-vehicle travel time** (in minutes): represents the time spent in the specific mode or combination of modes (if it is a multimodal trip). This is estimated using the Network Model for the AM Peak and Inter Peak periods.
 - Access/egress time (in minutes): includes the access time (walking/bus) from the origin of the trip to the main mode station/stop. Access time is perceived by users at a higher rate than in-

vehicle time, and therefore Generalized Costs typically include a 'penalty' multiplier factor compared to in-vehicle travel time (Section 5)

- Wait time (in minutes): depends on the frequency of the service and estimated as half of the headway. The uncertainty related to wait time also results in penalty multiplier factor compared to in-vehicle travel time.
- **Transfer time** (in minutes); estimated time transferring between stops/stations when a combination of modes is used. Transfers are also penalised by users and an additional transfer time penalty is included (Section 5).
- Perceived quality of the service (mode penalty): There are intrinsic and intangible benefits perceived by passengers between rail-based modes and conventional bus related to the quality and reliability of the service. These benefits are generally included in the Generalized Cost as a time penalty/bonus depending on the perceived value of the users. For example, at equal travel time and cost, transit users typically prefer riding in a train compared to a bus.
- 4.45 The attributes included to estimate the Generalized Costs of **Park & Ride users** are the same parameters as those described for transit users, but it also includes the auto travel times and costs associated with accessing the Park & ride & Ride station. The monetary costs include fuel and parking costs (if applicable).
- 4.46 The attributes used to estimate the Generalized Costs of *Auto users* include travel time, fuel, parking and tolls (currently A25 and A30 are tolled in the region and outside the REM study area).
- 4.47 Given that some of the Generalized Cost components are measured in time and others in monetary values, the *value of time* (VoT) is used to homogenize the different costs in the same units (minutes or CAD\$). The value of time provides an indication of how much an individual is prepared to pay in order to save a given amount of journey time.
- 4.48 The Generalized Cost is a combination of travel time and costs associated with each mode and these are described below. The behavioural parameters associated to the Generalized Cost calculation have also been addressed in this section.

Travel time attributes

In-vehicle Travel Time

- 4.49 *Auto* in-vehicle travel times are estimated in the Network Model based on the estimated demand on each particular link and the link attributes (number of lanes per direction, vdf, etc.)
- 4.50 Transit travel times are estimated from the Transit Model Choice Model (EMME) by applying a Transit Time Function (ttf) to links to ensure transit travel times account for the type of transit service provided (commuter, express, local) and the road type the service operates on (transit only, mixed traffic).
- 4.51 Table 4.3 summarizes the various ttfs applied in the model. These were estimated based on the scheduled bus travel times and auto travel times to ensure an accurate representation of travel times was obtained.

Table 4.3: Model Transit Time Functions (ttf)

Transit service	Transit time function (ttf)
All road transit links in Downtown	ttf= 1.10 * timau
Montréal	where timau represent car travel time
Local transit links outside Downtown	ttf= 1.17 * timau
Montréal	where timau represent car travel time
Express hus convises	ttf= 1.09 * timau
Express bus services	where timau represent car travel time
Champlain Bridge bus lane	ttf= us2
Champiani bridge bus iane	where us2 represents bus travel time
Other bus only lanes	ttf= average speed to ttfs
Rail and Métro	Based on scheduled travel time

Transit Wait Times

4.52 Wait times are an important component of the Generalized Cost calculation and typically penalizes users compared to the in-vehicle time. The values estimated are presented later in this section and these are applied to the wait times (half the headway) estimated in the Transit Model Choice (EMME) model.

Transit Station Access and Interchange times

- 4.53 Access time to stations and transfer times between stations or between modes are also important components of the Generalized Cost calculation, since it is typically heavily penalized by users.
- 4.54 A site visit was carried out during the second week of August 2016 to measure the main interchange and street access locations. 32 stations and corresponding platform and street accesses were surveyed with a total of 350 measurements. These included the following:
 - 23 Métro stations
 - 8 AMT rail stations
 - 11 of the main interchange locations
- 4.55 The survey involved registering walking time to each location. This was translated into walking distance in order to be coded into the EMME Transit Mode Choice Model. The following assumptions were adopted:
 - Walking speed
 - Average walking speed estimated at 1.12 m/s
 - Access times
 - Walking times were measured from the street access door to the entrance of the platform
 - Where available, the surveyor stood (and not walked) on escalators
 - Transfer times
 - Transfer times between two lines were calculated from the exit of one platform to the entrance of the other platform
 - Commuter rail interchange stations

- Access times and transfer times between rail lines at Gare Centrale, Lucien L'Allier and Vendôme were based on an average travel time on all possible platforms because commuter rail lines do not have a designated platform and arrival and departure platforms change frequently.
- 4.56 For stations where no travel times were recorded, an average street access distance of 180 metres (160 seconds) was applied based on the average of the measurements obtained during the survey. These estimates were revised and updated as required during the calibration process presented in Section 6.

Monetary Cost attributes

Auto and Park & Ride costs

4.57 Monetary costs for auto and Park & Ride users include operating costs, parking and toll costs (if applicable, currently applied on the A25 and A30).

Transit costs

- 4.58 Another key component to the Generalized Cost calculation is the monetary cost associated to the transit trip. The complexity of estimating this parameter relates to the availability of a wide range of ticket products and concessions which result in a different trip unit fares i.e. frequent users use monthly cards with reduced unit fares and fare discounts are applied to student or seniors.
- 4.59 For the purposes of simplicity and applicability to the Transit Mode Choice Model (EMME) we have estimated an weighted average transit fare matrix for each user type (student and adult) covering all the zones in the model (a total of 1766 zones).
- 4.60 In order to estimate this matrix, we have analysed in detail the different ticket types and fares available in the study area, and what is the market share of those for the key market segments (student and adult). This has been discussed in Section 3.
- 4.61 This section includes the assumptions adopted based on the analysis of the demand and revenue datasets provided by AMT, STM, RTL and CIT transit agencies.
- 4.62 The model has been developed for 2 type of users; adults and students (adults include regular fares while reduced fares include seniors, children, etc.). Table 4.4 and Table 4.5 summarise the fare assumptions adopted for each market.
 - **STM Montréal Island trips**: the average fare estimated for the whole Montréal Island and by ticket type based on the analysis of STM current fares:
 - \$1.93 for Adults
 - \$1.03 for Students
 - *CIT trips (South Shore/A10)*: Table 4.4 shows the average fare estimated for each CIT and by ticket type.

Table 4.4: Average Fares – CITs (2015 \$)

AV FARE	CITCRC CITVR		ITVR	OMITSJU		CITROUS		CITLR		
Zone	ADULT	STUDENT	ADULT	STUDENT	ADULT	STUDENT	ADULT	STUDENT	ADULT	STUDENT
4									\$2.65	\$2.24
5	\$3.23	\$2.78	\$3.71	\$2.78	\$3.42	\$2.78	\$2.90	\$2.58	\$2.71	\$2.30
6	\$3.48	\$3.28	\$4.25	\$3.28	\$3.69	\$3.27	\$3.04	\$2.99	\$2.75	\$2.60

- Ville de Saint-Jean-sur-Richelieu: also provides services to the South Shore and Montréal Island. Ticket sales and revenue was analyzed and the following fares were estimated for trips to Montréal:
 - \$4.93 for adult
 - \$3.28 for student
- *RTL*: fare for internal trips in Longueil was based on the average fare extracted from the ticket sales and revenues information. This was estimated as \$1.99 for regular and \$1.14 for students.
- *Rest of Trips*: For the rest of the trips, the average fare has been estimated based on the existing average fare by zone for AMT users as shown in Table 4.5.

ZONE	AVERAGE ADULT	AVERAGE STUDENT
1	\$2.01	\$1.66
2	\$2.38	\$1.95
3	\$2.77	\$2.34
4	\$3.02	\$2.52
5	\$3.47	\$2.92
6	\$4.14	\$3.49
7	\$5.19	\$4.00

Table 4.5: Average fare – AMT (2015 \$)

- 4.63 The fares estimated above have been used as a base to define the 2015 average transit fare matrix. The calculation of the Fare OD matrix was based on the zone location and the number of zones travelled between each OD pair.
- 4.64 On Montréal Island, STM and AMT services have different fares. To reflect the differential fares between STM and AMT commuter rail services, the following approach was adopted in modelling terms (only applied for ODs in Montréal Island):
 - A 'base' fare matrix was created based on the STM fares for adult and students (see paragraph 4.62).
 - An 'incremental fare' was introduced in the model to represent the additional cost of commuter rail trips on Montréal Island. This has been included in the model by increasing the walk access time to the various AMT stations based on the zone the station is located in (and

ensuring the additional access time was only applied once per trip). Table 4.6 shows an example of how this was applied.

Montréal Island AMT Fare Zone	STM Adult Fare	AMT Adult Fare	VoT (\$/hr)	Equivalent Additional Travel Time (mins)	Additional Distance Coded (m)
1	\$1.94	\$2.01	\$8	0.5	40
2	\$1.94	\$2.38	\$8	3.3	240
3	\$1.94	\$2.77	\$8	6.3	450

Table 4.6: AMT and STM fare differential application

Generalized Cost Parameters

Stated Preference Surveys

- 4.65 In order to assess the specific model parameters (values of times, weights and mode preference) associated with the different users in the corridor, a number of Stated Preference surveys were carried out by Steer Davies Gleave in May and June 2016.
- 4.66 Respondents were presented with 8 cards with different hypothetical scenarios where REM was compared to other modes. These scenarios were designed for each individual respondent based on their existing trip patterns (Origin/Destination, mode used and existing trip travel time). The behaviour parameters and value of time for each type of user were estimated based on the responses to these scenarios.
- 4.67 The analysis of the survey presented in Table 4.7: shows that 60% of the respondents 'traded' during the SP exercise i.e. they chose their current mode at least once and they chose the new REM service at least once out of the 8 choices. However, 40% of respondents always chose the same mode (23% always chose their existing mode and 16% always chose REM).

Trading	Car	Park & Ride	Transit	Total
Traders ⁽¹⁾	67%	59%	57%	60%
Always REM	12%	18%	18%	16%
Always Current Mode	20%	24%	25%	23%

Table 4.7: Corridor SP Traders Summary

⁽¹⁾ Traders chose their current mode at least once and chose the new REM service at least once out of the 8 choice exercises.

4.88 The overall analysis suggests a resistance to change from the existing mode to REM as evidenced by the higher proportion of Current Mode non-traders (23%). Although this resistance is typically observed for auto users around the world, the analysis also showed a resistance for existing transit users to remain on their existing transit modes. This is somewhat surprising for existing bus users, where the REM service will provide an improved level of service in terms of quality (smooth ride in a clearly identified network with multi-door loading/unloading) and reliability (service operates completely segregated from car traffic) on a service much more akin to a Métro or rail service.

- 4.89 Table 4.8 shows the behaviour parameters extracted from the SP analysis:
 - Value of Time (VoT): shows how much an individual is prepared to pay in order to save an hour of journey time and it is applied to convert fares and other costs into travel time. This has been estimated for work and non-work users separately.
 - Access and Wait time factors: represent the perceived penalty for the time spent to access and to wait for the main mode compared to the in-vehicle time. This is included as a multiplier to the estimated access/wait times.
 - Transfer penalty: additional time added to the Generalized Cost calculation as a penalty for the transfer. This penalty is added for each transfer required for the full trip.
 - Mode constant: additional time added to the Generalized Cost calculation to represent passenger's quality and reliability perceptions of different modes.

Parameter	Transit Users	Car Users
VoT Work	\$7.37	\$14.85
VoT Non-work	\$7.91	\$14.85
Access time factor	1.6	2.7
Wait time factor	1.6	1.8
Transfer Penalty	+4 min	
Mode penalties	REM vs Rail/Métro: +11 min REM vs Bus: +6min	REM with transit access (vs Car): +21 min REM with Park & Ride (vs Car): +4 min

Table 4.8: Corridor SP results

- 4.90 Table 4.8 shows some preference of existing transit modes to their current mode compared to REM. Typically for a system like REM (guided rail and completely segregated from traffic), we would expect REM to be as attractive as Métro or rail and therefore all sharing the same mode constant. Furthermore, we would expect REM to be perceived as 'better' than bus which is not as comfortable and subject to traffic unreliability. However, the Transit Users SP results are showing the opposite trend, with an estimated penalty for using the REM of 6 minutes compared to the bus i.e. a trip of 20 minutes travel time between bus and REM would be perceived by bus passengers as 6 minutes faster than by REM.
- 4.91 On the other hand, a model developed only with "traders" (eliminating both "always current mode and always REM" non-traders) results in a REM mode constant in Line with expectations with an estimated penalty to the bus of 5 minutes compared to the REM and indifference between rail, Métro and REM at equal time and costs. This tends to indicate the existence of a bias in the SP responses.
- 4.92 There are a number of possible reasons for this response to REM including:
 - Opposition to the elimination of direct express routes to their final destination

- Misunderstanding of the REM project and potential association with a service of lower service quality and reliability (streetcar)
- Resistance to change
- 4.93 It is unclear how each of these possible reasons contributed to the selection of the bus versus REM in the Corridor SP results. In light of our professional experience and extensive past LRT and rapid transit work in Canada and around the world, we believe the trader model shows a more realistic estimation for the REM characteristics.
- 4.94 Table 4.8 also displays a low VoT for Park & Ride users, especially when compared to pure transit users. We believe the pure transit users VoT model shows a more realistic estimate of the Park & Ride VoT.
- 4.95 The VoT and modal constant assessments and adjustments made are discussed below.

Value of Time Assessment

- 4.96 The value of time is an important parameter of the Generalized Cost, since it converts the various cost components into a unified time value to be compared across alternative modes. The higher the value of time, the more users are willing to pay to save time.
- 4.97 In order to assess the reasonableness of the estimated Value of Time, it is common practice to compare it to half the hourly wage rate. In this case it is \$10.4 (half the Quebec hourly wage of \$20.8/hour estimated from Statistics Canada data).
- 4.98 On this basis:
 - Auto users (\$14.5) values of time seem to be within the higher range, which is consistent with a typical higher income level. Moreover, it is very similar to the MOTREM assumption of \$14/hour.
 - Transit users (\$7.9-\$7.4) values are however within the lower range of what would be expected for Transit and Park & Ride users. However, these values seem to be consistent with previous SP surveys carried out in Montréal which have resulted in low VoT.

Modal Constant Assessment

- 4.99 The modal constant is another particularly important component of the Generalized Cost, since it determines the mode preference of users given similar travel time and cost conditions.
- 4.100 The results obtained from the SP surveys show a consistent preference of rail modes versus bus (on-street bus mode constant has a 5 minute penalty compared to Métro and rail modes) and in Line with expectations. However, the Stated Preference survey, when using the entire sample is showing biased results against REM.
- 4.101 The model developed only with "traders" (eliminating both current mode and REM non-traders) results in a REM mode constant in Line with the expectation that REM is perceived as favorable as commuter rail and Métro and a 5 minutes penalty for bus users when compared to REM (see Table 4.9).

Table 4.9: Corridor SP results

Parameter	All Transit Users	Only Traders	
REM vs Rail/Métro	+11min	0	
REM vs Bus	+6min	-5min	

- 4.102 We believe the trader model shows a more realistic estimation for the REM characteristics with similar quality and reliability characteristics to the existing rail and Métro services, and therefore we expect a similar mode constant.
- 4.103 While this assumption is reasonable, it is important to understand and compare with evidence observed in studies/applications. Appendix B describes our review of literature and applications to similar projects.
- 4.104 The analysis confirms the reasonableness of a 5 minute mode constant against bus users in favor of REM. However the uncertainty of this parameter should be taken into account when developing the reference case and carrying out the risk assessment and defining sensitivity analysis as described in Section 7.

Airport model

Model Overview

- 4.105 The Aéroport Pierre-Elliott-Trudeau model is a standalone spreadsheet model, which estimates the level of demand that will switch to REM from each of the existing modes (Bus, Car Park & Fly, Car Kiss & Fly and Taxi). Note: Airport staff are only assumed to use Local Bus (not 747 Express) and Car Park & Fly currently.
- 4.106 REM capture is calculated by comparing the Generalized Cost for travel using the existing mode with the Generalized Cost for travel using REM. Generalized cost includes:
 - Walk time
 - Wait time (which for transit includes any interchange time)
 - In-vehicle time
 - Fare or parking charge
- 4.107 Airport passenger and staff demand has been estimated and distributed by market segment using the assumptions in Section 3, (see Table 3.9 for the distribution of in-scope demand by market segment). A binary choice model is then used to understand how each market segment reacts to the change in Generalized Cost when comparing their existing mode to REM.
- 4.108 The greater the Generalized Cost advantage of REM compared with the existing mode, the more capture is likely to be abstracted.

Réseau électrique métropolitain (REM) | REM Forecasting Report

4.109 REM capture is calculated for an average hour in the AM peak (6-9 am) and an average hour in the Inter Peak (9am-3pm).

Generalized Cost components

4.110 Table 4.10 shows the Generalized Cost components for each mode and their source.

			Source		
Walk Time	Bus	Varies for each trip	Estimated in Transit Mode Choice model		
	Тахі	0 minutes			
	Car (Park & Fly)	10 minutes	Based on data on car parks on ADM website.		
	Car (Kiss & Fly)	0 minutes			
Wait Time	Bus	Varies for each trip	Estimated in Transit Mode Choice model		
	Taxi	0 minutes	Assumed no wait time.		
	Car (Park & Fly)	10 minutes	Based on data on car parks on ADM website.		
	Car (Kiss & Fly)	0 minutes	Assumed no wait time.		
In-vehicle Time	Bus	Varies for each trip	Estimated in Transit Mode Choice model		
	Тахі				
	Car (Park & Fly)	Same times for all of these modes.	Estimated in Network Model		
	Car (Kiss & Fly)				
Fare	Bus	Varies for each trip	Estimated in Transit Mode Choice model		
	Тахі	\$40 fixed downtown fare \$4.86 + \$1.7 per km	Based on <i>Steer Davies Gleave</i> online research of standard taxi fares in Montréal		
	Car (Park & Fly)	\$140 parking charge for passengers \$0 for staff	Passenger charge based on an assumed average 9 nights stay at the Aéroport Pierre-Elliott- Trudeau (using 2016 SP survey data) and average \$16 per night from <i>Steer Davies Gleave</i> online research of Aéroport Pierre-Elliott-Trudeau car park charges.		
	Car (Kiss & Fly)	\$0	Assumed no charge for drop off at the Aéroport Pierre-Elliott-Trudeau.		

Table 4.10: Generalized Cost components for existing modes

- 4.111 Components are weighted according to their relative importance. For example, time spent walking or waiting is usually perceived as more than time spent travelling in a vehicle. These weights have been estimated from our Stated Preference work and benchmarked against experience elsewhere. Given that some of the Generalized Cost components are measured in monetary values, a value of time (which varies for each mode and market segment) is used to convert these in to time values.
- 4.112 The auto and transit travel time and cost components used to generate Generalized Costs have been estimated from the Network Model. This allows us to maintain consistency between the two models and ensure that any REM configuration or service changes can be reflected in the Airport access model.

Generalized Cost Parameters

- 4.113 In order to assess the specific model parameters (values of times, weights and mode preference) associated with the different type of Airport users, Stated Preference interviews were undertaken with passengers in the departure lounge of Aéroport Pierre-Elliott-Trudeau in July 2016¹¹.
- 4.114 Respondents were presented with eight cards with different hypothetical scenarios where REM was compared to the current mode used to access the Aéroport Pierre-Elliott-Trudeau (Park & Fly, Dropped-off, Taxi or 747 bus). These scenarios were designed for each individual respondent based on their existing trip patterns (Origin/Destination, mode used and existing trip travel time). The behaviour parameters and value of time for each type of user were estimated based on their responses to these scenarios.
- 4.115 The analysis of the Airport survey sample showed that, overall 62% of the respondents chose the hypothetical scenario ('traded') during the SP exercise. However, 38% of respondents always chose the same mode (26% always chose their current mode and 12% always chose REM).
- 4.116 Respondents who used auto-based modes (Park & Fly, Drop off and Taxi) have a higher share of respondents who always chose their existing mode (41%, 28% and 26% respectively) compared with 747 bus users who were less likely to remain loyal to their current mode (only 3% of bus respondents always chose to stay on the bus).

Tradings	Car Park & Fly	Car Kiss & Fly	Taxi	747	Total air travelers	Airport Staff
Traders	51%	58%	66%	77%	62 %	58%
Always REM	8%	14%	8%	20%	12%	1%
Always Current Mode	41%	28%	26%	3%	26%	41%

Table 4.11: Airport SP Traders Summary

4.127 The analysis suggests:

- Auto-based modes have an intrinsic predisposition against the REM with a resistance to change from their existing mode. This is evidenced by the high level of non-traders in favour of the Current Mode. This resistance is typically observed for auto users around the word and is an expected result.
- Existing bus users are more likely to favour REM, perceiving a benefit from an improved level of service in terms of quality (smooth ride in a clearly identified network with multi-door loading/unloading) and reliability (service operates completely segregated from car traffic) in a service much more akin to a Métro or rail service. It is therefore reassuring to see that 747 bus users have an intrinsic predisposition in favor of the REM.

¹¹ Summer is not an ideal time to undertake research. However choosing summer is unlikely to affect passengers' willingness to pay values, which is more affected by the mixture of journey purposes of the passengers interviewed.

4.128 Table 4.12 shows the behaviour parameters extracted from the SP analysis:

Table 4.12: Airport SP results summary

Parameter	Car Park & Fly	Car Kiss & Fly	Taxi	747 Bus	Airport Staff	
VoT Business ⁽¹⁾	\$166.6	\$37.5	\$52.80	640	6c5 0	
VoT Non-business ⁽¹⁾	\$58.3	\$33.3	\$28.10	\$13	\$65.0	
Access time factor	1.0	1.3 (Business)	2.8	1.0	1.0	
Wait time factor	1.0	1.4 (Nonbusiness)	5.6	4.4	1.0	

⁽¹⁾ VoT is for Business and Non-business separately for Park & Fly, kiss & Fly, Taxi and Staff. 747 bus splits the markets into AM Peak and Inter Peak, and does not distinguish business and non-business trips.

- 4.129 While the value of times obtained from the SPs are very high, experience in other jurisdictions shows that these values for air travelers are typically much higher than those observed for other trip purposes (i.e. commuter travel). For example, the US Department of Transport ¹² guidelines provide an average value of time of \$44/\$60 (in 2012 USD) for all purpose and business air travel (\$56/\$72 in 2016 USD).
- 4.130 While the average VoTs for air travelers seem to be within acceptable ranges, the *Park & Fly* values appear to be extremely high, especially for Business users (\$166.6 per hour). It is also worth noting that a similar effect is observed with *airport Staff* that are currently using the Airport parking facilities.
- 4.131 However, business travellers and Airport staff are reimbursed for the parking costs and therefore there is a resulting bias against any other mode, with a very high component of non-traders who always chose the car or taxi, no matter how attractive the new transit system is (41% of surveys).
- 4.132 This reflects a clear resistance of existing car users (both air travelers and Airport staff) to shift modes unless they are asked to pay for a parking fee.
- 4.133 *Drop off and Taxi users* present a high value of time, as well as a penalty to the access and wait time, which is in Line to what is expected.
- 4.134 **747** bus users present a value of time which is almost double to that observed in the corridor transit system. This is in Line to what it is expected, given the different trip purpose and different type of users. It also reflects the preference of users to REM, although it has been reflected in a higher value of time.
- 4.135 As discussed, the Stated Preference parameters are a result of preferences stated by the users of each mode, which could be biased. The application process of these variables is an iterative process, where the different parameters are adjusted in order to better reflect the expected diversion propensity of current demand by mode.

¹² https://www.transportation.gov/sites/dot.gov/files/docs/USDOT%20VOT%20Guidance%202014.pdf

4.136 As mentioned above, the uncertainty of these parameters will be taken into account when developing the risk assessment and defining sensitivity analysis and low case scenarios.

Expansion factors

- 4.137 The demand modelling has been carried out for the AM peak period (6am-9am) and the Inter Peak period (9am-3pm). In order to translate into daily and annual ridership, we have estimated the following factors:
 - Weekday factor: translates AM peak and Inter Peak demand into an average week day, using the following:
 - AM Peak to Total Peak factor
 - Inter Peak to Total Off Peak factor
 - Annual factor: translates average weekday demand into annual demand.

Corridor expansion factors

- 4.138 In order to estimate the potential annualization factors to apply to the REM forecasts, Steer Davies Gleave has reviewed the most recent factors for the most relevant services in the corridor.
- 4.139 The estimated existing weekday and annual expansion factors are shown in Table 4.13.
| Mode | AMT Rail | AM PEAK
TO PEAK | INTER PEAK
TO OFF PEAK | WEEKDAY TO
ANNUAL | %PEAK |
|--|----------------------|--------------------|---------------------------|----------------------|-------|
| | Deux-Montagnes | | | | |
| | Line | 1.88 | - | 241 | 85% |
| RAIL | Vaudreuil-Hudson | | | | |
| | Line | 1.92 | - | 214 | 92% |
| | Saint-Jérôme Line | 1.86 | - | 213 | 92% |
| Mode | West Island Bus | AM PEAK
TO PEAK | INTER PEAK
TO OFF PEAK | WEEKDAY TO
ANNUAL | %PEAK |
| CTM | Non-express routes | 2.13 | 1.66 | 277 | 52% |
| STIVI | Express routes | 1.95 | 1.59 | 273 | 59% |
| Mode | Métro | AM PEAK
TO PEAK | INTER PEAK
TO OFF PEAK | WEEKDAY TO
ANNUAL | %PEAK |
| | Green Line | 2.50 | 1.86 | 313 | 49% |
| | Orange Line | 2.18 | 1.78 | 293 | 52% |
| MÉTRO | Yellow Line | 1.54 | 1.77 | 320 | 55% |
| | Blue Line | 2.43 | 1.73 | 306 | 49% |
| | Total | 2.27 | 1.81 | - | 51% |
| | | AM PEAK | INTER PEAK | WEEKDAY TO | |
| Mode | Line | ΤΟ ΡΕΑΚ | TO OFF PEAK | ANNUAL | %PEAK |
| | RTL | 1.98 | 1.55 | 284 | 66% |
| EXPRESS
BUSES
(SOUTH
SHORE (A10 | AMT | 1.83 | 1.70 | 239 | 79% |
| | Ville de Saint-Jean- | | | | |
| | sur-Richelieu | 2.09 | 1.58 | 287 | 65% |
| corridor) | CITs | 1.90 | 2.15 | 192 | 81% |
| | Total | 1.94 | 1.63 | 258 | 70% |

Table 4.13: Expansion factor analysis

Source: AMT, STM and CITs data

West Island/Deux-Montagnes Line Corridor

- 4.140 The expansion factor on the Deux-Montagnes, as in the other rail lines, is currently very low. This reflects the commuting nature of the corridors, which are mainly used for trips to work. Furthermore the service provision in the non-peak hours and weekends is limited (60 minute headways on Deux-Montagnes).
- 4.141 The bus demand observed in the DM corridor has a higher daily factor than rail, related in part to the higher frequency of Inter Peak services. However, it is also worth noting, that Inter Peak demand is partly comprised of shorter distance trips related to local access (shopping, errands, etc.) that will not be captured by the DM rail service.
- 4.142 Most of the demand for REM in West Island/Deux-Montagnes Line Corridor will be captured from the Deux-Montagnes Line, express bus services and local bus services feeding the Orange Lineline. Therefore, a combination of the three has been taken into account in order to estimate expansion factors.

	AM PEAK TO PEAK	INTER PEAK TO OFF PEAK	WEEKDAY TO ANNUAL	%PEAK
DM	1.88		241	85%
Express routes	1.95	1.59	273	59%
Orange line	2.18	1.78	293	52%
ESTIMATED REM	1.94	1.63	*	*

Table 4.14: West Island/Deux-Montagnes Line Expansion Factor Analysis

* The % of the peak periods compared to the total weekday demand will vary in each case

South Shore/A10 Corridor

4.143 The expansion factors on the express bus routes are higher, especially on the RTL services that provide a higher level of service in the Inter Peak periods. Since most of the REM demand in this corridor will be captured from the existing bus demand, we have estimated similar expansion factors to those observed on the express bus services today.

Line	AM PEAK TO PEAK	INTER PEAK TO OFF PEAK	WEEKDAY TO ANNUAL	%PEAK
RTL	1.98	1.55	284	66%
AMT	1.83	1.70	239	79%
Ville de Saint-Jean- sur-Richelieu	2.09	1.58	287	65%
CITs	1.90	2.15	192	81%
Total	1.94	1.63	258	70%
ESTIMATED REM	1.94	1.63		

Table 4.15: South Shore/A10 Corridor Expansion Factor Analysis

Annual factor

- 4.144 The annual factor reflects the multiplier that should be applied to convert weekday demand into annual demand. This incorporates weekend, public holidays and seasonality (with commuter service demand reducing over the Xmas and summer holidays).
- 4.145 The very low annual expansion factors on the Deux-Montagne Line and some of the bus express services (Express 90 Chevrier, etc.) reflect, in part, the low service provision of those services in the Inter Peak periods and during weekends and holidays. However, it is also worth noting, that Inter Peak demand is mostly comprised of local short distance trips related to shopping, errands, etc., that are less likely to be captured by REM due to the larger distance between stations.
- 4.146 There is normally a correlation between the level of service provision/demand in the Peak period of a weekday and that over the weekend and low season. Figure 4.8 plots the correlation between the percentage of demand in the peak periods over the average weekday, and the annual factor for some of the key services in the corridor.

Aéroport Pierre-Elliott-Trudeau

4.147 The 747 bus service has a very different hourly profile, since it reflects the Airport demand based on flight schedules, instead of commuting demand. Figure 4.9 shows that the actual peak period for the 747 bus service is between 3pm and 4pm on a weekday.

Figure 4.9: 747 Demand Profile

4.148 Based on the 747 bus data above, the following 747 expansion factors have been estimated:

- AM peak + Inter Peak to weekday: 2.38
- Daily to annual: 277

Ramp up

4.149 Ramp up is the reduction in potential ridership during the first years of operation as users gradually become fully aware of the alignment, service patterns and benefits of the new system. The extent of the ramp up depends on the type of user captured and is unique to every transport infrastructure project.

- 4.150 While users from the existing transit system are expected to transfer almost immediately if the existing rail/bus routes are removed, shifts from competing transit modes or from car will take longer to be implemented.
- 4.151 Table 4.16 shows some examples of ramp up rates for LRT systems and it also includes an estimation of the ramp up when the 747 Aéroport Pierre-Elliott-Trudeau express service was introduced.

	London, UK (Croydon)	Nottingham Line 1, UK	Manchester Métrolink, UK	Tren Urbano, Puerto Rico	747 bus service
Year 1	74%	83%	60%	75%	80%
Year 2	83%	96%	84%	83%	90%
Year 3	85%	99%	92%	89%	95%
Year 4	90%	100%	94%	100%	100%
Year 5	100%	100%	100%	100%	100%

Table 4.16: Ramp Up in LRT Systems

4.152 We have applied the following ramp up factors for the REM system.

Table 4.17: REM Ramp Up Factors

	West-Island/Deux- Montagnes Line Corridor		Airport Corridor		South Shore/A10 Corridor	
Year	Existing DM	New	New	New	Existing Express (eliminated)	New
2022	100%	60%	80%	60%	90%	60%
2023	100%	80%	90%	80%	95%	80%
2024	100%	90%	95%	90%	100%	90%
2025	100%	100%	100%	100%	100%	100%

5 Demand Development

5.1 The existing and future demand is incorporated in the model in the form of an OD matrix, which defines the demand between each origin and destination, and in some cases segregated by type of user. Different sources have been used in order to define the base matrices, which in some cases have been complemented with data collection (described in the Data Collection report).

2015 Demand - Base Year

Auto demand

5.2 The MOTREM model auto demand OD matrix was used as the basis to estimate auto demand. MOTREM was calibrated to the Enquête 2013 and matrix developed for 2016 which is summarized in Table 5.1.

	AM (6am-9am)	Inter Peak (9am-3pm)	24 hours
Auto	1,166,657	1,350,718	4,800,628
Auto Commercial	146,799	664,107	1,057,953
Light Goods Vehicles	61,210	141,535	308,561
Heavy Goods Vehicles	20,272	55,763	127,309
TOTAL	1,394,938	2,212,122	6,294,451

Table 5.1: MOTREM Demand Total (2016)

5.3 The MOTREM auto demand was reviewed and auto calibration is presented in Section 6.

Transit demand

- 5.4 The transit demand matrix was developed using the following data sources:
 - 2013 Enquête origine-destination
 - 2015 AMT on-board survey
 - 2016 Steer Davies Gleave on-board survey
 - 2015 bus boarding data

2013 Enquête origine-destination

5.5 The survey covers almost 79,000 households and provides origin-destination data for the AM peak period and 24 hours for all modes of transportation. The expanded matrix, based on estimated population in 2013 is shown in Table 5.2. Note that Inter Peak demand is not estimated specifically as part of the Enquête process. Réseau électrique métropolitain (REM) | REM Forecasting Report

Table 5.2: 2013 Enquête origine-destination	 Trips by Mode
---	-----------------------------------

Mode	AM Peak	24 Hour
Auto (driver)	1,140,253	5,069,864
Auto-passenger	251,262	1,216,957
Auto subtotal	1,391,515	6,286,821
Transit	399,677	1,363,795
Park & Ride	44,856	123,397
Auto-passenger + transit (kiss & ride)	23,694	55,536
Transit subtotal	468,227	1,542,728
Total	1,859,742	7,829,549

2015 AMT on-board survey

5.6 AMT undertakes on-board OD surveys at regular intervals on the six commuter rail lines and the Express 90 Chevrier bus service. AMT provided origin-destination data for all rail lines and the Express 90 Chevrier. These were carried out in September 2015 in the AM peak and were collected via postcards which passengers returned as they alighted from the train. Figure 5.1 shows the AMT train network.

Figure 5.1: AMT Rail network

5.7 The train survey was conducted in the AM peak period and the bus survey was conducted all day. Passengers were asked about their origin and destination in addition to access and egress mode, ticket type used and socio-economic background. The observations were expanded by the number of passengers (boarding) and the boarding station. Table 5.3 shows a summary of the survey sample.

Table 5.3: 2015 AMT – Survey Sample

Line	Date	Responses	Passenger counts	Initial Passenger Sample	Valid responses	Revised Passenger Sample
Deux-Montagnes Line	Sep 2015	8,030	14,186	57%	7,482	53%
Vaudreuil-Hudson Line	Sep 2015	5,610	8,285	68%	5,217	63%
Mascouche Line	Sep 2015	2,649	3,388	78%	2,470	73%
Saint-Jérôme Line	Sep 2015	4,821	6,788	71%	4,558	67%
Express 90 Chevrier	Nov 2015	2,106	3,424	62%	1,893	55%
Mont-Saint-Hilaire Line	Sep 2015	3,729	4,739	79%	3,544	75%
Candiac Line	Sep 2015	1,938	2,412	80%	1,795	74%
TOTAL		28,883	43,222	67%	26,959	62 %

5.8 The overall survey sample was very high (62%) considering it relied on passengers returning the survey form. Figure 5.2 shows a comparison between the AM peak AMT trips from the 2013 Enquête origine-destination and the 2015 AMT survey.

Figure 5.2: 2013 Enquête origine-destination and 2015 AMT Survey Comparison (AM peak)

2013 Enquête origine-destination (AMT trips)

- 5.9 The survey data shows the 2013 Enquête origine-destination has more AMT trips than the 2015 AMT survey (51,000 vs 40,000) with both datasets having similar trip patterns.
- 5.10 An important proportion of trips to the train station are by car (car-driver access mode). Table 5.4 shows the number and proportion of car-driver access mode trips. Note that the AMT survey did not specify whether the car driver access was to an 'official' Park & Ride site or drivers parked on the surrounding streets around the station.

Variable	Trips	%
Car-driver access mode	22,066	55%
All other modes	17,875	45%
Total Trips	39,941	100%

Table 5.4: AMT Car Driver Access Mode Trips (AM Peak)

2016 Steer Davies Gleave on-board bus survey

- 5.11 Steer Davies Gleave conducted an on-board OD survey on some of the West Island/Deux-Montagnes Line and South Shore/A10 bus services in May and June 2016 in the AM peak and Inter Peak periods (described in the Data Collection Report). The bus OD matrix was estimated based on:
 - OD surveys expanded; and
 - Additional transit demand to account for services, direction of travel and other areas not included on the survey. This demand was based on the 2013 Enquête origine-destination and 2015 bus boarding data.

Table 5.5 summarises the estimated trip totals.

Table 5.5: Bus trip totals

Period	Steer Davies Gleave OD Survey boardings	Total boardings
AM Peak	28,618	76,413
Inter Peak	17,982	68,273

Demand development

Data sources

- 5.12 Demand matrices were developed by combining data from the sources indicated above and following an extensive process to review and check the accuracy and validity of each data source. The matrices were developed into:
 - 3 demand segments (Work, Student and Other)
 - 2 time periods: AM peak from 6am-9am and inter peak from 9am-3pm
- 5.13 Table 5.6 summarizes the data sources by mode and period.

Table 5.6: Matrix data source summary

Mode	Period	Direction	Source
	AM peak	All	2015 AMT OD survey
AMT Rail	Inter Peak	All	2013 Enquête origine- destination
		To Montréal	2015 AMT OD survey
5 00 01	AM peak	To Chevrier	2013 Enquête origine- destination
Express 90 Chevner		To Montréal	2015 AMT OD survey
	Inter Peak	To Chevrier	2013 Enquête origine- destination
West Island/Deux-Montagnes Line and South Shore/A10 in-scope buses	AM peak and Inter Peak	All	2016 Steer Davies Gleave OD surveys and 2013 Enquête origine-destination
Métro and other	AM peak and Inter Peak	All	2013 Enquête origine- destination

5.14 The parking location was used as the origin from the AMT OD survey with a car driver access mode i.e. a Park & Ride trip.

Initial demand

5.15 Table 5.7 shows the initial demand totals estimated by Steer Davies Gleave and compares them to the 2013 Enquête origine-destination results. The following figures show the trip pattern for each matrix.

Period	Purpose	Initial (A)	2013 Enquête origine-destination (B)	Difference (A-B)	((A-B)/A)%
AM Peak	Work	220,470	265,899	(45,429)	-21%
	Study	137,483	173,582	(36,099)	-26%
	Other	24,982	28,746	(3,764)	-15%
	Total	382,935	468,227	(85,292)	-22%
	Work	72,120	53,978	18,142	25%
Inter Deak	Study	80,811	65,236	15,575	19%
Inter Peak	Other	254,724	204,182	50,542	20%
	Total	407,656	323,396	84,259	21%

Table 5.7: Initial and AMT 2013 enquête transit demand comparison

5.16 Table 5.7 shows that the initial demand estimates have reduced considerably the number of AM peak trips in the 2013 Enquête while the opposite is the case in the Inter Peak. This is a common occurrence with household surveys which are generally developed on a 24-hour basis and where respondents include their AM peak trips (more regular and predictable) but can under-report non-peak trips which are more infrequent and therefore not reported.

Réseau électrique métropolitain (REM) | REM Forecasting Report

5.17 Figure 5.3 to Figure 5.8 show the trip patterns for the initial estimated demand. Note that this demand was refined in the calibration process to ensure that road and transit flows on the network reflected observed boardings and peak loads and therefore further adjustments were carried out as reported in Section 6.

5.18 Figure 5.3 shows how the trip pattern for the AM peak work trips shows a large number of trips with destination in downtown Montréal.

Figure 5.3: Work trip distribution (AM Peak)

5.19 Study trips shown in Figure 5.4 display a much more diverse trip pattern and are linked to the location of the various universities and colleges e.g. Université de Montréal west of Mont-Royal.

Figure 5.4: Study trip distribution (AM Peak)

5.20 Other AM peak trips are considerably less than Work and Study trips in volume and show a wide geographical distribution as shown in Figure 5.5.

Figure 5.5: Other trip distribution (AM Peak)

5.21 The Inter Peak Work trip pattern is still concentrated in the downtown area but patterns are more dispersed distribution than in the AM peak as shown in Figure 5.6.

Figure 5.6: Work trip distribution (Inter Peak)

5.22 Figure 5.7 shows that Inter Peak Study trips show a higher concentration of destinations at university locations than the AM Peak, likely as a result of high schools generating limited demand after the AM Peak.

Figure 5.8 shows the largest geographical spread of origins and destinations for Other trips, in Line 5.23 with the variety of trip purposes and the non-work nature of Inter Peak trip-making.

Online © Esri. All rights reserved.

Figure 5.8: Other trip distribution (Inter Peak)

Airport demand

- 5.24 The Airport demand has been assessed separately from the rest of the demand, since the Household Surveys (Enquête) do not capture the Airport market. The Enquête is based on surveys to Montréal residents and focusses on day to day trips as described earlier in this section.
- 5.25 The spatial distribution of Montréal resident air passenger trips were distributed according to an aggregated version of the Network EMME Transit Mode Choice Model zones. There are 68 zones in the Airport model (Figure 5.9) where each station is assigned to an individual zone. The spatial distribution of non-resident air passenger trips was taken from the Steer Davies Gleave Airport SP survey.

Figure 5.9: Airport model zoning system

5.26 The EMME demand distribution resulted in some gaps in the distribution. Where the equivalent area in the ADM surface access surveys was found to be non-zero, demand has been 'in filled'¹³.

¹³ Zones with zero demand have been compared in the ADM surface access data with their contiguous neighbours to establish their relative importance. Using this we have estimated a relative importance factor for the 'zero zone' which has been applied to the distribution in our Aéroport Pierre-Eliot-Trudeau model. As a final step the whole EMME based demand matrix has been re-scaled to maintain its overall size and to ensure that some zones do not become unduly represented.

5.27 The distribution of staff demand has been taken from the ADM staff survey of 2008. This survey contains staff postcodes, which have been mapped to the Airport model zoning system. This distribution has then been applied directly to the total annual staff trips. 3% of staff trips were found to be from areas outside of our zoning system and have thus been excluded.

Demand Growth

- 5.28 In this section, Steer Davies Gleave has analysed how auto and transit demand has grown in the past, both in the South Shore/10 and West Island/Deux-Montagnes Lines corridors.
- 5.29 This section also includes the development of models to estimate future growth based on observed historic trends and their correlation with the key socio-economic variables, in order to estimate future matrices

West Island/Deux-Montagnes Line Transit Growth

Historical Growth

5.30 Steer Davies Gleave has analysed how transit demand has grown in the West Island/Deux-Montagnes Line corridor since 2007. This has been based on historical ridership on the West Island bus routes, Deux-Montagnes Line (DM) and Vaudreuil-Hudson Line (V-H) rail lines and Métro Orange Line. The data is shown in Table 5.8.

	Deux- Montagnes Line	Vaudreuil- Hudson Line	Bus	Orange Line
2007	7,620,800	3,267,900	62,726,469	98,587,989
2008	7,687,200	3,565,000	64,145,817	103,377,436
2009	7,245,600	3,462,600	63,151,709	105,113,052
2010	7,347,200	3,421,700	63,758 , 197	107,681,830
2011	7,543,300	3,759,000	66,432,141	112,882,353
2012	7,864,800	3,869,500	67,711,050	113,768,470
2013	7,744,800	3,845,300	68,011,631	115,415,163
2014	7,675,000	3,763,500	65,443,879	116,033,440
2015	7,495,900	3,689,800	62,906,809	114,098,821

Table 5.8: Historical Transit Demand (Annual)

Source: AMT and STM

5.31 Figure 5.10 shows the data presented as growth from 2007. This shows quite a variable growth pattern with the 2008-09 recession clearly identified with a reduction in demand across all services (with the exception of the Orange Line).

Figure 5.10: West Island/Deux-Montagnes Line Historical Ridership Growth

Source: AMT and STM

- 5.32 Figure 5.11 shows a consistent pattern between transit growth on the Deux-Montagnes Line and West Island buses and the employment growth in Montréal until 2013. However, the correlation breaks in 2014, with a much higher than expected reduction in transit boardings.
- 5.33 STM in their annual report has identified a number of potential factors for this reduction including¹⁴:
 - An increase in the number of active trips (walking and cycling)
 - An increase in new mobility options (car sharing, taxi industry transformation etc.)
 - Decline in the cost of gas
 - Difficult winter conditions
- 5.34 This represents a potential risk area for the forecasts and alternative transit growth scenarios should be considered when reviewing REM forecasts.

¹⁴ STM 2015 Annual Report

Figure 5.11: West Island/Deux-Montagnes Line transit ridership and socio-economic parameters growth

Source: AMT, STM and Statistics Canada

Growth Model

- 5.35 Based on the relationship observed between transit boardings and the socio-economic indicators, a regression model was developed. In order to select the best indicators of transit ridership, several statistical analyses were compared including Quebec GDP and Greater Montréal's population and employment statistics.
- 5.36 The analysis showed that the highest explanatory variable was employment in Greater Montréal. Note that the ridership decline in 2014 and 2015 is challenging to model, considering all the socioeconomic variables examined increased and the model was therefore developed by using data up to 2013 data only.
- 5.37 The R² value of the modelled versus observed ridership based on these parameters was estimated to be 0.74, which indicates an acceptable correlation of this parameters to transit demand. Figure 5.12 shows the comparison of observed and modelled boardings for reference and the considerable year-to-year variations. We have also presented the growth as linear between 2007 and 2013 and this shows a close growth match.

Source: Steer Davies Gleave and Statistics Canada

South Shore/10 Corridor Transit Growth

Historical growth

5.38 Steer Davies Gleave has analysed how transit demand has grown since 2005 in the corridor based on historical ridership in the A-10 corridor and Métro Yellow Line. Table 5.9 shows the historical boardings for each of the service providers in the A-10 corridor.

	AMT	RTL	omitsju	CITVR	CITCRC	CITLR	CITROUS	VILLE DE SAINT-JEAN- SUR- RICHELIEU	MÉTRO YELLOW LINE	TOTAL
2005	593,062	6,224,758	172,998	67,960	550,281	753,206	185,019	1,071,772	10,066,518	19,685,574
2006	916,148	6,139,549	204,059	70,122	567,481	776,123	376,358	1,069,337	10,127,509	20,246,686
2007	1,122,160	6,345,889	227,607	86,713	648,065	803,367	432,361	1,090,937	10,399,207	21,156,306
2008	1,195,941	6,480,234	256,849	72,324	676,836	823,849	460,163	1,157,501	10,681,822	21,805,519
2009	1,260,126	6,381,705	266,713	78,007	658,508	796,242	470,628	1,125,371	10,963,981	22,001,281
2010	1,449,774	6,462,624	271,631	104,343	703,337	844,584	496,450	1,147,555	11,182,389	22,662,687
2011	1,559,593	6,376,363	277,884	75,887	745,051	931,249	524,036	1,211,282	11,447,724	23,149,069
2012	1,675,488	6,325,821	319,382	74,132	821,812	988,197	553,906	1,187,341	11,374,094	23,320,173
2013	1,577,400	6,275,680	367,077	72,418	906,482	1,048,628	585,479	1,221,997	11,276,937	23,332,098
2014	1,535,500	6,275,687	368,085	62,358	970,384	1,104,991	600,959	1,208,283	10,519,144	22,645,391
2015	1,525,800	6,218,338	347,693	63,874	991,891	1,162,551	597,182	1,233,393	10,868,701	23,009,423

Table 5.9: South Shore/A10 Corridor Historical Transit Demand (Annual passengers)

*The historical demand and the demand presented in this report do not necessarily match because the annual data provided by the various transit agencies includes all their services whereas the demand estimated by Steer Davies Gleave for the South Shore/A10 corridor is only for the routes in scope.

Source: AMT, RTL and CITs

5.39 Figure 5.13 shows graphically the boarding data in Table 5.9 since 2005.

Source: AMT, RTL and CITs

- 5.40 The data presents some surprising behaviour:
 - Very large ridership increases for AMT (basically the Express 90 Chevrier) and CITROUS between 2005 and 2006, which is likely a result of significant improvements in service. Since the purpose of this analysis is to develop a long term econometric analysis, these changes in service provision will distort the results and those two observations have been removed from further analysis.
 - The Yellow Line was also closed for extensive re-construction over weekends in 2014 resulting in a considerable reduction in boardings¹⁵.
 - In a similar pattern to the West Island/Deux-Montagnes Line transit services, the data shows boarding reductions over the last few years for a number of services (AMT, Sainte-Julie, and Vallé de Richelieu).
- 5.41 Figure 5.14 shows a close correlation between boardings (for buses) and the various socioeconomic parameters.

¹⁵ https://www.stm.info/fr/presse/communiques/2013/travaux-sur-la-ligne-jaune-du-Métro-en-2014---25-fins-de-semaine-de-fermeture-a-prevoir

Figure 5.14: South Shore/A10 boardings and socio-economic parameters growth

Source: AMT, RTL, CITs and Statistics Canada

Growth Model

- 5.42 As with West Island/Deux-Montagnes Line passenger travel, a regression model has been developed between historical boardings and socio-economic indicators. Quebec GDP and Greater Montréal's population and employment provided the best fit and the R² of the modelled versus observed ridership based on these parameters was estimated to be 0.97, which indicates a very close correlation of these parameters to transit demand.
- 5.43 Figure 5.15 shows the comparison of observed and modelled boardings for reference.

Figure 5.15: South Shore/A10 Growth Model Calibration

Source: Steer Davies Gleave and Statistics Canada

Airport demand growth

5.44 The Airport demand growth has been based on the forecasts provided by ADM as shown in Table 5.10 and Figure 5.16.

Table 5.10: Airport growth forecast

ADM	2015- 2020	2020- 2034
Domestic	2.3%	1.8%
Regional	2.4%	2.0%
International	3.7%	2.3%
Total	2.9%	2.1%

Source : ADM

Figure 5.16: ADM Airport growth forecast

5.45 In order to validate this growth and provide reassurance of these estimates, Steer Davies Gleave carried out a simple GDP-driven forecast. The methodology and assumptions adopted to develop these models were as follows:

- 2016 has been used as the base year and demand based on ADM's Business Plan (September 2015).
- Growth models have been estimated for each traffic segment using regression analysis based on historic data.
 - Regional traffic forecasts (US only) have been correlated to a combination of Canada GDP (for outbound traffic) and US GDP (for inbound traffic)
 - For international traffic we have used a combination of Canada GDP (for outbound traffic) and a mix of Europe/LATAM and AsiaPac GDPs (for inbound traffic)
- GDP forecasts have been obtained from reliable sources: Global Insight Oct 15 for long term forecast and short term updates from April 16 IMF updates.
- 5.46 The following figure shows the growth estimates of ADM for each market segment compared to the GDP elasticity model developed.

Figure 5.17: Comparison of ADM forecasts and GDP-Elasticity model

5.47 The result of this analysis estimates CAGRs that are 30% higher than forecasted by ADM. However, it needs to be highlighted this is a high level and unconstrained assessment, which does not take into account the maturity or saturation of the Airport.

Future Transit Matrix Development

Corridor Transit Growth

- 5.48 A transit growth base case scenario was developed using the models described above based on the identified key demand drivers the independent variables.
- 5.49 Socio-economic growth forecasts have been collected from different reliable sources and summarized in Table 5.11.

Annual Growth	2016	2017	2018	2019	2020	2021	2021-2031
GDP	2.2%	1.8%	1.9%	2.0%	2.0%	1.9%	0.7%
Population	0.9%	0.9%	0.9%	0.9%	0.9%	0.9%	0.6%
Employment	0.8%	1.1%	1.0%	0.9%	0.8%	0.8%	0.6%

Table 5.11: Socio-economic variables and forecasts

Sources: Quebec GDP (Moody's), Montréal population (Institute de la Statistique du Quebec Référence case), Montréal employment (Moodys)

5.50 The application of the input parameters identified in Table 5.11 results in the following transit growth estimates as shown in Table 5.12.

Table 5.12: Transit ridership growth estimates

CAGR	2015-2021	2021-2031
South Shore/A10 corridor	1.4%	0.9%
West Island/Deux-Montages Line corridor	1.0%	0.7%

Future Transit Matrix Development

- 5.51 These growth forecasts represent an estimate of overall average growth in the corridor. However, growth per Origin and Destination will vary based on more localized growth patterns.
- 5.52 In order to estimate specific growth per OD, we have used the distribution of demand growth estimated by MTQ for the auto OD matrices¹⁶. This distribution represents an in-depth analysis of land use and population changes across Greater Montréal and has been presented in terms of the macro-zones shown geographically in Figure 5.18.

Figure 5.18: Macro-zones of Greater Montréal

5.53 Demand growth for the 'work' trip purpose by macro-zone for 2021 is shown in Table 5.13 and Table 5.14.

¹⁶ Demand growth patterns of auto matrices except for the declining of trips to downtown and surroundings (macro zones 1 and 2) was considered as increasing in transit

	1 Downtown	2	3	4 West Island	5 South Shore	6 Laval	7	8 South Shore
1- Downtown	1.17%	1.12%	1.12%	0.75%	1.31%	1.12%	1.12%	
2	1.16%	1.21%	1.14%	0.95%	1.30%	1.14%	1.12%	1.31%
3	1.18%	1.20%	1.26%	0.92%	1.31%	1.12%	1.12%	
4- West Island	0.83%	0.93%	0.93%	1.04%	1.51%	0.94%	1.25%	1.31%
5- South Shore	1.20%	1.32%	1.14%	1.26%	1.42%	1.31%		1.31%
6 Laval	0.95%	1.07%	1.00%	0.80%	1.27%	1.34%	1.10%	
7	0.82%	0.87%	1.03%	1.28%	0.81%	1.40%	1.18%	
8 South Shore	1.11%	1.16%	1.11%	1.19%	0.73%	0.39%	1.22%	1.66%

Table 5.13: Transit demand growth for 2015 to 2021, work trip purpose, AM Peak

Source: Steer Davies Gleave and MTQ

Table 5.14: Transit demand growth for 2015 to 2021, work trip purpose, Inter Peak

	1 Downtown	2	3	4 West Island	5 South Shore	6 Laval	7	8 South Shore
1 Downtown	1.15%	1.18%	1.15%	0.98%	1.34%	1.15%		1.34%
2	1.19%	1.23%	1.04%	1.01%	1.34%	1.18%	1.15%	1.34%
3	1.15%	1.19%	1.17%	0.98%		1.47%	1.15%	
4 West Island	0.99%	1.00%	0.98%	0.99%		2.65%	0.98%	1.34%
5 South Shore	1.38%	1.32%	1.34%	1.34%	1.35%			1.34%
6 Laval	1.15%	1.15%	1.15%	0.98%		1.75%		
7	1.15%	1.25%	1.15%				1.32%	
8 South Shore	1.37%	2.23%	1.34%	1.34%	1.53%			1.66%

Source: Steer Davies Gleave and MTQ

5.54 Total transit demand growth by macro-zone for 2031 is shown in Table 5.15 and Table 5.16.

	1 Downtown	2	3	4 West Island	5 South Shore	6 Laval	7	8 South Shore
1 Downtown	0.91%	0.88%	0.87%	0.71%	1.02%	0.89%	0.87%	1.02%
2	0.91%	0.95%	0.89%	0.77%	1.03%	0.89%	0.89%	1.02%
3	0.92%	0.93%	0.95%	0.75%	1.04%	0.88%	0.90%	
4 West Island	0.69%	0.76%	0.76%	0.87%	1.08%	0.68%	0.50%	1.05%
5 South Shore	0.94%	1.04%	0.95%	1.01%	1.09%	1.02%	1.02%	1.04%
6 Laval	0.78%	0.88%	0.89%	0.85%	1.03%	1.09%	0.86%	
7	0.67%	0.70%	0.84%	0.77%	0.76%	0.88%	1.18%	1.05%
8 South Shore	0.92%	0.92%	0.92%	0.97%	0.94%	0.97%	0.96%	1.17%

Table 5.15: Total transit demand growth for 2021 to 2031, AM Peak

Source: Steer Davies Gleave and MTQ

Table 5.16: Total transit demand growth for 2021 to 2031, Inter Peak

	1 Downtown	2	3	4 West Island	5 South Shore	6 Laval	7	8 South Shore
1 Downtown	0.90%	0.90%	0.86%	0.75%	1.06%	0.85%	0.86%	1.06%
2	0.93%	1.01%	0.89%	0.79%	1.06%	0.88%	0.86%	1.06%
3	0.88%	0.94%	0.93%	0.75%	1.04%	0.71%	0.87%	1.06%
4 West Island	0.82%	0.84%	0.75%	0.84%	1.06%	0.89%	1.04%	1.07%
5 South Shore	1.05%	1.06%	1.06%	1.05%	1.16%	1.06%		0.96%
6 Laval	0.92%	0.89%	0.88%	0.72%	1.06%	1.10%	0.96%	
7	0.88%	0.88%	0.88%	0.82%	1.06%	0.80%	1.13%	
8 South Shore	1.05%	1.08%	1.01%	1.04%	1.02%			0.75%

Source: Steer Davies Gleave and MTQ

5.55 The resulting transit demand totals for 2021 and 2031 are shown below.

Réseau électrique métropolitain (REM) | REM Forecasting Report

Period	Purpose	2015	2021	2031
AM	Work	207,734	221,944	239,027
AM	Study	132,500	141,963	153,366
AM	Other	24,223	26,068	28,170
AM TOTAL		364,457	389,975	420,563
Inter Peak	Work	84,073	90,195	97,569
Inter Peak	Study	93,151	99,953	108,139
Inter Peak	Other	289,974	311,037	336,420
Inter Peak Total		467,198	501,185	542,128

Table 5.17: Transit demand matrices by forecast year

Auto Future Matrix Development

5.56 Future auto matrices have been based on MTQ's forecast growth as contained in MOTREM. This distribution represents an in-depth analysis of land use and population changes across Greater Montréal.

6 Model Calibration

- 6.1 Calibration refers to the process undertaken to compare observed against modelled travel data to ensure the model represents current travel demand patterns in Greater Montreal accurately. The calibration process is iterative and involves a review of network coding and demand levels. This section presents the model calibration undertaken and includes:
 - Traffic flow
 - Rail loadings
 - West Island transit boardings
 - St Lawrence transit screenline

Traffic Model

- 6.2 MOTREM is a 24-hour traffic forecasting model. However, the focus of our work has been on the AM Peak (6:00am-9:00am) and Inter Peak (9:00am-3:00pm) periods and these were calibrated to a 2015 fall weekday base year.
- 6.3 The calibration was carried out for he two screenlines shown in Figure 6-1 and Figure 6.2. This allows us to understand the main auto demand on the REM corridors across each major screenline.

Figure 6-1: St Lawrence River crossing auto screenline

6.4 Table 6.1 to Table 6.4 show the resulting AM Peak and Inter Peak auto traffic flow calibration. Note that calibration to individual road links can be challenging and ensured we captured the overall

traffic crossing the various screenlines to ensure a good match between modelled and observed screenline flows across screenlines and time periods (between -17% and +14% is the range of differences for the screenline totals by direction).

Location	Direction	Observed Counts	Modellel Counts	Abs. Diff	% Diff
Champlain Bridge	To Montréal	18,275	17,558	-717	-4%
Champlain Bridge	From Montréal	7,961	7,255	-706	-9%
Honoré Mercier Bridge	To Montréal	9,801	10,273	472	5%
Honoré Mercier Bridge	From Montréal	3,735	4,496	762	20%
Victoria Bridge	To Montréal	7,120	7,472	352	5%
Victoria Bridge	From Montréal	One way only		-	-
Jacques Cartier Bridge	To Montréal	13,276	16,307	3,031	23%
Jacques Cartier Bridge	From Montréal	5,847	7,197	1,350	23%
Louis Hippolyte Lafontaine tunnel	To Montréal	14,652	14,978	327	2%
Louis Hippolyte Lafontaine tunnel	From Montréal	13,124	13,217	92	1%
Subtotal	To Montréal	63,123	66,588	3,465	5%
Subtotal	From Montréal	30,668	32,166	1,498	5%
TOTAL		93,791	98,754	4,963	5%

Table 6.1:	Bridge	Crossing	Screenline	(AM Peak)	
------------	--------	----------	------------	-----------	--

Table 6.2: Bridge Crossing Screenline (Inter Peak)

Location	Direction	Observed Counts	Modelled Counts	Abs. Diff	% Difference
Champlain Bridge	To Montréal	20,807	18,397	-2,410	-12%
Champlain Bridge	From Montréal	20,584	21,231	647	3%
Honoré Mercier Bridge	To Montréal	11,882	12,164	282	2%
Honoré Mercier Bridge	From Montréal	11,280	14,795	3,515	31%
Victoria Bridge	To Montréal	3,815	2,028	-1,787	-47%
Victoria Bridge	From Montréal	3,887	1,148	-2,739	-70%
Jacques Cartier Bridge	To Montréal	14,664	16,110	1,446	10%
Jacques Cartier Bridge	From Montréal	13,594	20,169	6,575	48%
Louis Hippolyte Lafontaine tunnel	To Montréal	20,366	19,059	-1,308	-6%
Louis Hippolyte Lafontaine tunnel	From Montréal	20,799	22,959	2,160	10%
Subtotal	To Montréal	71,534	67,757	-3,777	-5%
Subtotal	From Montréal	70,144	80,303	10,159	14%
TOTAL		141,678	148,060	6,382	5%

Location	Direction	Observed Counts	Modelled Counts	Abs. Diff	% Diff
Pointe-Claire	EB1	11,316	14,374	3,058	27%
Pointe-Claire	EB2	10,741	12,046	1,305	12%
Pointe-Claire	WB	10,567	8,504	-2,064	-20%
Des Sources	WB1	7,357	6,226	-1,131	-15%
Des Sources	WB2	12,213	10,346	-1,867	-15%
Des Sources	EB1	12,718	13,686	967	8%
Des Sources	EB2	12,721	12,855	134	1%
Des Sources	EB3	18,270	14,872	-3,398	-19%
Subtotal	To Montréal	65,766	67,833	2,067	3%
Subtotal	From Montréal	30,137	25,076	-5,061	-17%
TOTAL		95,903	92,909	-2,995	-3%

Table 6.3: West Island Screenline (AM Peak)

Table 6.4: West Island Screenline (Inter Peak)

Location	Direction	Observed Counts	Modelled Counts	Abs. Diff	% Diff
Pointe-Claire	EB1	15,522	15,157	-365	-2%
Pointe-Claire	EB2	10,954	10,433	-521	-5%
Pointe-Claire	WB	23,818	23,302	-516	-2%
Des Sources	WB1	14,942	12,661	-2,281	-15%
Des Sources	WB2	27,066	28,511	1,445	5%
Des Sources	EB1	28,229	11,486	-16,743	-59%
Des Sources	EB2	13,734	11,486	-2,248	-16%
Des Sources	EB3	13,897	24,891	10,994	79%
Subtotal	To Montréal	82,336	73,452	-8,884	-11%
Subtotal	From Montréal	65,826	64,474	-1,352	-2%
TOTAL		148,162	137,926	-10,236	-7%

6.5 Note that as result of the analysis and calibration shown above, there was some adjustments made to the overall MOTREM demand and this is shown below.

Table 6.5: Auto Demand Total – After Calibration

	AM (6am-9am)	Inter peak (9am-3pm)	
Auto	1,123,178	1,350,718	
Auto Commercial	146,799	664,107	
Light Goods Vehicles	60,591	141,535	
Heavy Goods Vehicles	19,610	55,763	
TOTAL	1,350,178	2,212,122	

Transit Model

Rail Loadings

6.6 AMT provided the loading profiles for all the rail lines in Montréal as shown in Figure 5.1.

6.7 A comparison of modelled versus observed rail loadings for each Line are shown in Figure 6.3 to Figure 6.8. Note that the loading profile calibration focussed on the AM peak direction towards Montréal as this is when the largest proportion of the rail demand is present (which then returns from Montréal in the evening). The demand levels on services from Montreal are either very low or there are no services (Candiac Line and Mont-Saint-Hilaire Line).

Figure 6.3: Deux-Montagnes Line Load Profile – AM Peak towards Montréal

Figure 6.4: Mascouche Line Load Profile – AM Peak towards Montréal

Figure 6.6: Vaudreuil-Hudson Line Load Profile – AM Peak towards Montréal

Figure 6.7: Candiac Line Load Profile – AM Peak towards Montréal

6.8 The AM profile figures show the model provides an accurate representation of rail boardings and peak loads across all lines. Figure 6.9 to Figure 6.14 present the Inter Peak for a number of lines. Note that a large number of Inter Peak routes provide a very low service provision leading to very low demand levels and no attempt has been made to calibrate such low demand levels e.g. peak load on Mascouche is 23 passengers inbound and 159 outbound.

Figure 6.9: Deux-Montagnes Line Load Profile – Inter Peak towards Montréal

Figure 6.10: Deux-Montagnes Line Load Profile – Inter Peak from Montréal

Figure 6.11: Vaudreuil-Hudson Line Load Profile – Inter Peak towards Montréal

Figure 6.12: Vaudreuil-Hudson Line Load Profile – Inter Peak from Montréal

West Island/Deux-Montagnes Line Transit Boardings

6.9 A summary of rail, Métro and bus boardings for the West Island /Deux-Montagnes Line Corridor is included in Table 6.6. Note that Métro peak loads were not available. Non-peak direction AMT rail data (the OUT services) is included for reference, but as indicated limited effort and resources were allocated due to the very low demand levels observed on those particular services resulting from very low services being provided (in italics).

Line	Modelled	Observed	Difference	Percentage	GEH ¹⁷
Métro Blue Line	4,725	6,198	-1,473	-23%	20
Métro Green Line	19,939	20,544	-606	-3%	4
Métro Orange Line	29,813	30,717	-903	-3%	5
Métro Yellow Line	4,288	4,079	209	5%	3
Candiac Line IN	896	804	92	11%	3
Candiac Line OUT	No service	-	-	-	-
Deux-Montagnes Line IN	4,927	4,746	181	4%	3
Deux-Montagnes Line OUT	29	45	-16	-35%	3
Mont-Saint-Hilaire Line IN	1,566	702	863	123%	26
Mont Mont-Saint-Hilaire Line OUT	No service	-	-	-	-
Mascouche Line IN	722	800	-78	-10%	3
Mascouche Line OUT	1	7	-6	-90%	3
Saint-Jérôme Line IN	2,066	2,229	-163	-7%	4
Saint-Jérôme Line OUT	129	35	94	270%	10
Vaudreuil-Hudson Line IN	2,662	2,742	-80	-3%	2
Vaudreuil-Hudson Line OUT	27	75	-48	-64%	7
West Island bus routes18	13,522	13,370	151	1%	1
West Island express bus routes	3,643	4,193	-550	-13%	9

Table 6.6: Transit boarding calibration – Average AM Peak Hour

6.10 A scatter plot comparing modelled and observed results presented in Table 6.6 is shown in Figure 6.15

¹⁷ The GHE statistics used to compare two sets of volumes. Values closer to zero indicate a best fit.

$$GEH = \sqrt{rac{2(M-C)^2}{M+C}}$$

+ C The GEH formulas gets its name from Geoffrey E. Havers.

¹⁸ List of route provided in Appendix C.

6.11 The same statistics are included for an average Inter Peak hour. As indicated in the AM calibration section, all AMT rail services are included for reference, but as indicated limited effort and resources were allocated due to the very low demand levels observed on those particular services resulting from very low services being provided (in italics).

Table 6.7: Transit boa	rding calibration –	Average Inter	Peak Hour
------------------------	---------------------	---------------	-----------

Line	Modelled	Observed	Difference	Percentage	GEH
Métro Blue	4,402	4,424	-22	-1%	0
Métro Green	14,216	14,380	-164	-1%	1
Métro Orange	17,409	16,987	421	2%	3
Métro Yellow	1,435	1,426	9	1%	0
Deux-Montagnes Line IN	273	234	39	17%	2
Deux-Montagnes Line OUT	607	529	78	15%	3
Mascouch Linee IN	12	5	8	170%	3
Mascouch eLine OUT	9	29	-20	-70%	5
Saint-Jérôme Line IN	81	47	34	73%	4
Saint-Jérôme Line OUT	193	131	62	47%	5
Vaudreuil-Hudson IN	63	62	0	1%	0
Vaudreuil-Hudson Line OUT	93	144	-51	-35%	5
West Island bus routes ¹⁹	9,211	10,120	-909	-9%	9
West Island express bus routes ¹³	1,457	1,888	-431	-23%	11

Figure 6.16: Transit boarding calibration – Inter Peak Average Hour

¹⁹ List of services included in Appendix C

St Lawrence River Transit Screenline

- 6.12 The Saint-Laurent River screenline includes the Champlain Bridge transit services. We have estimated the peak load crossing the river from the following data sources:
 - Métro Yellow Line peak load from the number of boardings at Longueil station (first station on the line) provided by STM for an average day in 2015
 - Saint Hilaire Line peak load between Saint Lambert and Lucien L'Allier
 - Estimation of Champlain Bridge transit load
- 6.13 The estimation of transit passages over the Champlain Bridge was challenging due to the number of potential data sources available. Table 6.8 summarizes the various data sources consulted and it shows the high level of divergence between the estimates. For the purposes of our calibration we have assumed the Terminus Centre Ville estimates as they:
 - Represent a number of years rather than one year only
 - Acknowledge issues with the other 2 methods of estimation

Table 6.8: Champlain Bridge Transit Estimates – AM Peak Period (6am-9am)

Source	Estimate	Comment
2013 Enquête origine-destination	22,500	Acknowledged by AMT as potentially high due to Terminus Centre Ville surveys
Terminus Centre- Ville surveys	18,532	Average of one day counts from 2011 to 2015 ²⁰ Does not include CIT Haut-St-Lawrence and CIT Sud-Ouest passengers as they use the Honoré Mercier Bridge It might include some boardings in stops in Montréal Island (trips did not cross the Saint Laurent)
2015 transit count estimate	18,287	Includes all bus boardings on bus services crossing the Champlain Bridge. However, not all boardings will cross the river (although the majority do)

6.14 The South Shore/A10 screenline comparison is shown in Figure 6.17 and it shows the model is predicting total transit demand across the St Lawrence accurately (within 5%) for the AM and Inter Peak periods, and just as importantly, with the correct assignment to each transit link across the river.

²⁰ Passenger counts of 19,473 (in 2011), 18,800 (in 2012), 18,771 (in 2013), 16,834 (in 2014) and 18,780 (in 2015).

* Champlain Bridge observed demand includes all boardings on St Lawrence services

Calibrated Transit Demand

6.15 The calibration of the various transit services presented above required the review and adjustment of transit services, travel times and network coding (station connections, transfer distances, etc.) and a number of matrix adjustments. The final total base transit demand is presented below.

Period	Purpose	Initial (A)	Final (B)	Difference (A-B)	((A-B)/A)%
	Work	220,470	207,734	12,736	-5.8%
	Study	137,483	132,500	-4,983	-3.6%
AIVI PEdK	Other	24,982	24,223	-759	-3.0%
	Total	382,935	364,457	-18,478	-4.8%
Inter Peak	Work	72,120	84,073	-11,953	-14.2%
	Study	80,811	93,151	-12,340	-13.2%
	Other	254,724	289,974	-35,250	-12.2%
	Total	407,656	467,198	-59,542	-12.7%

Table 6.9: Transit Demand Total – After Calibration

Airport Model

6.16 The Airport model is a spreadsheet based 'logit' model which takes time and cost inputs from EMME Transit Mode Choice Model and Network Model. The Airport Model itself contains a set of binary or pair-wise choices between the current mode of travel and REM. The model then forecasts the likely take up of REM in the future according to the assumptions made on the level of service on both REM and the existing current modes.

- 6.17 As such the calibration is less 'formal' than with a traditional network based model. Indeed, pairwise choices mean that there is no requirement to replicate the current situation. Instead the effort goes into establishing the size and market segmentation of the base demand, as has been described in Section 5.
- 6.18 Calibration type tasks are then more focussed on checking the sensitivity of the model to a range of factors including:
 - Stress testing the model to cases where REM has very low or zero fares compared with cases when the fare is relatively high to understand the likely range of capture
 - Checking implied fare and journey time elasticities are appropriate
 - Understanding the impact of the behavioural parameters and testing the model sensitivity to these
 - Checking that the 'logit curve' is not forecasting high levels of diversion from current modes when the generalized time advantage is small and making suitable adjustments.

7 REM Sponsor Case Forecasts

Sponsor Case definition

- 7.1 REM competitiveness and resulting ridership forecasts will depend to a large extent on the various assumptions undertaken. These relate not only to the REM service itself, but also to the bus network services and fares.
- 7.2 Table 7.1 describes the Sponsor Case Project Definition. This reflects the Sponsor assumptions of the most likely scenario, given the current engineering and operations analysis to date as well as discussions with a range of organizations (AMT, STM, Aeroport de Montréal) regarding bus restructuring and fare integration.

	Description	Assumption
Travel times	Deux-Montagnes to Rive-Sud	46:47
	Roxboro-Pierrefonds to Rive-Sud	36:47
	Sainte-Anne-de-Bellevue to Rive-Sud	46:23
	Aéroport Pierre-Elliott-Trudeau to Rive-Sud	38:30
	Correspondance A40 to Rive-Sud	23:00
Headways (AM Peak)	Deux-Montagnes to Rive-Sud	12
	Roxboro-Pierrefonds to Rive-Sud	12
	Sainte-Anne-de-Bellevue to Rive-Sud	12
	Aéroport Pierre-Elliott-Trudeau to Rive-Sud	12
	Correspondance A40 to Rive-Sud	20
Headways (Inter Peak)	Deux-Montagnes to Rive-Sud	15
	Roxboro-Pierrefonds to Rive-Sud	-
	Sainte-Anne-de-Bellevue to Rive-Sud	15
	Aéroport Pierre-Elliott-Trudeau to Rive-Sud	15
	Correspondance A40 to Rive-Sud	-
Fares	As per current fares	-
Fare Airport	Current average airport fare (\$3.15) with \$5 premium	\$8.15
Rus Ro-Structuring	South Shore services re-directed to REM stations	_
bus ne-su acturing	STM West Island bus network reconfigured	-
747	Eliminated from service	-

Table 7.1: Sponsor Case Project Definition

7.3 In addition to REM, bus service and fare assumptions identified above, there are a number of other model assumptions included in the Sponsor Case and these are detailed in Table 7.2.

Table 7.2: Sponsor Case Model Assumptions

Model Assumptions	Sponsor Case				
Users perception of REM	REM mode constant defined as 3 minutes (lower than Métro and rail).				
	CAGR	2015-2021	2021-2031		
Corridor growth	South Shore/A10	1.4%	0.9%		
	West Island/DM	1.0%	0.7%		
Aéroport Pierre-Elliott-Trudeau	CAGR	2015-2020	2020-2034		
growth	Aéroport	2.9%	2.1%		

Varies depending on the AM Peak and Inter Peak demand breakdown.

Ramp up		See belo	w			
	West-Island/Deux-Montagnes Line Corridor		Airport Corridor		South Shore/A10 Corridor	
Year	Existing DM	New	Existig 747	New	Existing Express (truncated)	New
2022	100%	60%	80%	60%	90%	60%
2023	100%	80%	90%	80%	95%	80%
2024	100%	90%	95%	90%	100%	90%
2025	100%	100%	100%	100%	100%	100%

Sponsor Case Forecast Review (2015)

- 7.4 REM is expected to start operation in 2021 (first full year of operation). However it is good practice to understand the impacts of REM in the base year (2015) to compare demand levels directly with the current situation and therefore assess and understand the robustness of the results.
- 7.5 This section presents the results of the analysis of this hypothetical scenario in which REM's Sponsor Case is applied to the base year (2015).

Demand captured by market and mode

7.6 REM will provide the Greater Montréal region with a new, fast and reliable transit service with an enhanced level of service in the peak and the off peak periods. As a result, it is expected that the new mode will capture demand not only from existing transit users, but also from other competing transit modes. Table 7.3 shows the total REM demand and where the trips have transferred from.

	AM Peak		Inter Peak		AM Peak + Inter Peak	
	Passengers	Percentage	Passengers	Percentage	Passengers	Percentage
Airport Capture	1,022	2%	1,974	8%	2,997	4%
Auto Capture	5,520	10%	-	0%	5,520	7%
Transit Capture	47,924	88%	21,750	92%	69,673	89%
TOTAL	54,466	100%	23,724	100%	78,189	100%

Table 7.3: REM Demand captured by Market

7.7 The table shows clearly that the majority of the REM demand is transferring from other transit modes (almost 90%) and the rest is made of airport (60% of which is also transit demand in the 747) and auto capture. Each of these markets is described below.

Airport capture

7.8 The airport demand captured from existing competing modes has been estimated with the airport choice model. Table 7.4 shows the majority of the demand is captured from the 747 bus service and a considerable proportion (24%) is expected to shift from taxi and car Park & Fly passengers.

AM PEAK+ INTER PEAK	747 bus passengers	Taxi	Airport staff Local Bus	Car Park & Fly Passengers	Car Park & Fly Airport Staff	Car Kiss & Fly Passengers	Total
Existing Demand	2,223	4,597	243	2,574	2,190	6,429	18,257
Demand which transfers to REM	1896	586	72	271	0	172	2,997
REM Capture	85%	13%	29%	11%	0%	3%	16%

Table 7.4: REM airport demand capture (2015)

7.9

It is expected that over 60% of REM demand will be existing transit demand that will shift from the 747 as the service is not operational as shown in Table 7.5.

Réseau électrique métropolitain (REM) | REM Forecasting Report

Table 7.5: REM Airport Demand Split

AM Peak and Inter-Peak	Passengers	Proportion
Existing 747	1,896	63%
Other modes	1,101	37%
Total	2,997	100%

1,160

420

740

Auto Capture

7.10 Demand shift from car to REM has been estimated with the auto shift model which estimates the user choice between auto, REM with transit access and REM with Park & Ride access. While the model shows a higher demand for P&R access, this demand is constrained by the capacity of existing facilities in most of the corridor. The only exceptions are the new or extended facilities in the South Shore/A10 area and in some locations in the West Island (mostly along the Sainte-Anne-de-Bellevue branch). Table 7.6 shows the car shift demand estimates.

Auto capture	AM peak boardings
Park & ride access	4,360
South Shore/A10	2,600
Other	1,760

Table 7.6: REM Car shift capture (2015)

Transit Capture

Transit access
South Shore/A10

Other

7.11 As indicated previously, most of the REM demand is captured from existing transit services. This is particularly the case from those services that are replaced (Deux Montagnes rail service) or truncated (South Shore/A10 express bus services) in order to be fully integrated with the REM. Table 7.7: shows that over 60% of the total transit demand shifting to REM are currently using the A10 and Deux Montagnes services.

Table 7.7: REM transit shift capture (2015)

	AM Peak	Inter Peak	AM Peak+ Inter Peak
A10 Express services*	16,458	8,262	24,721
Deux Montagnes*	14,371	4,802	19,173
Other	17,094	8,685	25,779
Transit Capture	47,924	21,750	69,673
% Existing	64%	60%	63%

* Data includes boardings at Gare Centrale

7.12 In summary, the following table shows the estimated number of boardings in the AM and Inter Peak periods should the REM have been implemented in 2015. The number of boardings have been aggregated for all the stations located in the South Shore/A10 and West Island/Deux-Montagnes corridor. Gare Centrale has been included separately.

Table 7.8: 2015 AM Peak and Inter Peak REM Boardings

REM section	AM Peak	Interpeak
South Shore/A10 stations*	22,614	5,281
West Island/Deux- Montagnes stations*	30,328	10,723
Gare Centrale	1,524	7,720
Total	54,466	23,724

* Data does not include boardings at Gare Centrale

- The South Shore/ A10 corridor incremental demand is moderate and in part driven by the additional Car Park and Ride capacity.
- However, it is the West Island/Deux-Montages corridor where the REM captures more additional demand, not only from Car Park and Ride users, but mainly from transit users.

Additional transit demand capture

7.14 Table 7.3 showed that REM will attract around 54,500 boardings in the AM peak and almost 24,000 in the Inter Peak. Over 60% of that demand is expected to shift from existing services running on the Deux-Montagne Line or express buses in the A10 corridor. This section describes the nature of the additional transit demand (defined as 'Other' in Table 7.7:) and has been split into the West Island/Deux-Montagne and South Shore/A10 corridors.

West Island/Deux-Montagne corridor: AM Peak capture (to Gare Centrale)

7.15 Table 7.9: shows the number of AM peak boardings on the West Island/Deux-Montagnes Line corridor and the increase of REM over the existing Deux-Montagne Line demand. This demand will include capture from transit (bus, rail and metro), Park & Ride and airport demand and represents a considerable proportion of the total REM demand.

	AM	M Peak Period (6am-9am)		Inter Peak Period (9am-3pm)		
Station	DM Modelled	REM Sponsor Case	Difference	DM Modelled	REM Sponsor Case	Difference
Technoparc Saint-Laurent		2	2		12	12
Aéroport Pierre-Elliott- Trudeau		723	723		1,002	1,002
Autoroute 13		324	324		98	98
Des Sources		780	780		655	655
Pointe-Claire		1,839	1,839		755	755
Kirkland		1,216	1,216		162	162
Sainte-Anne-De-Bellevue		1,009	1,009		314	314
Deux-Montagnes	3,156	3,307	151	323	455	132
Grand-Moulin	829	844	15	106	107	1
Sainte-Dorothée	1,532	1,643	111	28	60	32
Île-Bigras	256	429	173	11	48	37
Roxboro-Pierrefond	2,776	3,434	658	203	421	218
Sunnybrooke	1,688	1,692	4	476	448	-28
Bois-Franc	2,037	4,637	2,600	112	2,002	1,890
Du Ruisseau	1,065	1,441	376	71	77	6
Montpellier	881	2,430	1,549	292	923	631
Mont-Royal	395	751	356	68	1,185	1,117
Correspondance A40		2,659	2,659		1,321	1,321
Canora	193	1,169	976	182	677	495
TOTAL	14,800	30,300	15,500	1,900	10,700	8,900

Table 7.9: West Island/Deux-Montagnes Line Boardings (to Gare Centrale, 2015)

* Forecasts include transit capture, Park & Ride capture and Aéroport Pierre-Elliott-Trudeau demand.

- 7.16 Excluding the demand captured from the new Park & Ride facilities, the stations that register the highest growth are those located in the 'core' section where all the three branches converge (from Bois-Franc to Canora Stations). This is the section where REM provides very high frequencies (2 minutes and 40 seconds between Correspondance A40) and fast travel times compared to other transit alternatives and this makes REM very competitive compared to other options increasing capture from other transit modes between Bois-Franc and Canora stations.
- 7.17 Most of the additional trips during the AM peak period are commuting trips to Downtown Montréal. Some of these (around 1,700 trips) are expected to shift from car and will be using the new Car P&R facilities to access REM. However, the majority of the additional demand are existing transit users that currently access the Downtown Montréal with a combination of express bus service and the Orange Metro line.
- 7.18 Further analysis was carried out to understand more clearly the origin and destination of these additional trips (this was carried out with a select link analysis for all the trips that cross the Mont-Royal Tunnel in the AM peak period and in the Montreal direction). Figure 7.1: shows that most of the destinations are concentrated in the Downtown area, and most of the origins (64%) are located within 1.5km of the REM alignment.

Figure 7.1: AM Peak origin and destination of trips at Mont-Royal tunnel (to Gare Centrale, 2015)

7.19 To facilitate the analysis, the data has been aggregated in 7 areas identified in Figure 7.2:.

Figure 7.2: Zone Analysis Definition – West Island/Deux-Montagnes Line Corridor

7.20 Table 7.10 shows the split of the additional demand using the Mont-Royal Tunnel in the AM peak period.

Area	Trips	Proportion
1	2,041	26%
2	2,719	35%
3	634	8%
4	2,299	30%
5	120	2%
6	311	4%
7	-385	-5%
Other	17	0%
TOTAL	7,757	100%

Table 7.10: AM Peak additional demand origin on Mont-Royal tunnel (to Gare Centrale, 2015)

7.21 The table shows :

- 35% of the additional REM demand has its origin from the Sainte-Anne-de-Bellevue branch (zone 2) as a result of the introduction of a new rail service offering a high speed and 12 minute headway service direct to Downtown
- 30% of the additional demand originates from the airport branch and Orange Métro Line (zone 4) and
- 26% in the area between the western and eastern branches of the Métro Orange Line (zone 1).
- 7.22 The implementation of REM also leads to a reduction of the existing demand that currently crosses the Mont-Royal Tunnel on the Mascouche Line (with origin in zone 7). Some of current users are expected to shift to other modes as a result of the termination of the Mascouche Line at Correspondance A40 and therefore not providing a direct link to Downtown. Figure 7.3 identifies the location of the trips where REM demand decreases (focussed on zone 7).

Figure 7.3: Origins of REM AM Peak demand reductions (to Gare Centrale, 2015)

- 7.23 Although great part of the additional demand will be commuting trips to Downtown, it is also expected that the REM will attract a significant number of trips to access key Educational centres in the Greater Montreal Area. The implementation of REM will provide a very competitive alternative to access the Université de Montréal and other Colleges in the area, using frequent bus connections from Mont-Royal, Canora and Montpellier.
- 7.24 As a result, it is expected that the demand to those stations will increase significantly. And it has been estimated that Mont-Royal station will attract around 2,900 trips in the AM peak, Canora 2,600 trips and Montpellier 1,350. Further analysis from the model was undertaken to understand the demand generated at these locations.

Mont-Royal

7.25 With the demand being generated from West Island and the South Shore, this station is used as an interchange with bus services (routes 435 and 165) offering a good level of service to access the Université de Montréal as shown below.

Figure 7.4: Select link of REM demand - Mont-Royal

Montpellier

7.26 The majority of the demand originates on the West Island/Deux-Montagne corridor and a large proportion of these passengers use Montpellier as an interchange to access Vanier College using a short bus service, as shown below.

Figure 7.5: Select link of REM demand - Montpellier

Canora

7.27 Demand to Canora is split evenly between the West Island and South Shore. Some of the demand alight in this station to access the Université de Montréal campus by walking. Others use the station to access bus routes along Rue Jean Talon (routes 92 and 372).

Figure 7.6: Select link of REM demand - Canora

South Shore/A10 corridor: AM Peak capture (to Gare Centrale)

- 7.28 The introduction of REM, and the comprehensive bus reorganisation on the South Shore will also increase the number of REM boardings over existing transit demand by over 5,500 passengers during the AM peak period.
- 7.29 Almost 50% of this increase is due to the new Park & Ride facility at Rive-Sud station (with 3,000 spaces) while the analysis shows that most of the transit demand shift is originating from the Longueuil and Brossard areas.
- 7.30 Figure 7.7 presents the origins and destinations of the additional demand that crosses the Champlain Bridge in the AM peak. While a considerable number of the trips go to Downtown, the trip destinations are spread throughout the Island of Montréal. The REM provides a more direct and frequent link from the South Shore to the Downtown and especially those areas surrounding the core section of the REM (i.e. UdM).

Figure 7.7: AM Peak origin and destination of trips at Champlain Bridge (to Gare Centrale, 2015)

Sponsor Case Forecasts (2021 and 2031)

Peak and Inter Peak Forecasts

- 7.31 The 2021 and 2031 REM demand has been estimated using the same methodology as the 2015 estimation presented above. The main differences are that demand has been increased to account for socioeconomic growth in the region together with road and transit network changes identified in 4.27 and 4.28. A similar pattern to the capture rates and type of trips identified in the 2015 analysis was observed.
- 7.32 Table 7.11: shows the AM and Inter Peak REM demand captured from transit for 2021 and 2031. It shows that REM growth rates are in line with the overall demand growth identified in Section 5, with growth slightly higher in the Inter Peak period.

Réseau électrique métropolitain (REM) | REM Forecasting Report

Table 7.11:AM Peak and Inter Peak REM Boardings

		Demand by period			CAGR	
Period	REM section	2015	2021	2031	2015- 2021	2021- 2031
	South Shore/A10 stations	22,614	24,262	26,269	1.2%	0.8%
AM PEAK	West Island/Deux-Montages stations	30,328	31,909	33,875	0.9%	0.6%
	Gare Centrale	1,524	1,611	1,727	0.9%	0.7%
	Total	54,466	57,782	61,871	1.0 %	0.7 %
	South Shore/A10 stations	5,281	5,741	6,253	1.4%	0.9%
INTER PEAK	West Island/Deux-Montages stations	10,723	11,713	13,059	1.5%	1.1%
	Gare Centrale	7,720	8,208	8,804	1.0%	0.7%
	Total	23,724	25,663	28,117	1.3%	0.9%

7.33 The airport demand is highlighted below. A similar pattern to the 2015 analysis was observed with bus passengers representing the bulk of the demand generated for the airport station.

AM PEAK + INTERPEAK	Bus passengers	Taxi	Car (Park and Fly)	Car (Kiss and Fly)	Total
2021	2,295	679	316	199	3,488
2031	2,789	823	376	236	4,224

Table 7.12: REM capture - Airport demand (2021 and 2031)

7.34 The resulting boardings and alightings for each station for 2021 and 2031 (AM and Inter Peak) are shown below.

Table 7.13: AIV	I and Inter Peak Station	on Boardings and	Alightings	(2021 and 2031)
-----------------	--------------------------	------------------	------------	-----------------

		2021			2031			
	AM Peak Boards	AM Peak Alights	Inter Peak Boards	Inter Peak Alights	AM Peak Boards	AM Peak Alights	Inter Peak Boards	Inter Peak Alights
Île-des-Soeurs	153	553	22	121	162	593	25	132
Panama	13,739	344	3,464	2,370	14,977	388	3,797	2,603
Du Quartier	3,787	241	642	587	3,991	252	688	631
Rive-Sud	6,583	-	1,614	112	7,138	-	1,744	122
Technoparc Saint- Laurent	2	166	13	71	3	178	14	76
Aéroport Pierre- Elliott-Trudeau	816	583	1,160	1,115	952	706	1,397	1,608
Autoroute 13	338	376	104	125	360	402	116	134
Des Sources	818	282	697	541	880	298	749	575
Pointe-Claire	1,944	539	794	411	2,065	575	853	437
Kirkland	1,276	-	172	79	1,356	-	183	84
Sainte-Anne-de- Bellevue	1,053	99	309	26	1,120	106	354	27
Deux-Montagnes	3,431	138	489	1,044	3,590	149	533	1,127
Grand-Moulin	866	5	114	128	892	5	122	136
Sainte-Dorothée	1,661	77	64	491	1,684	83	68	489
Île-Bigras	456	71	55	94	490	77	84	104
Roxboro-Pierrefonds	3,597	190	448	856	3,782	202	511	910
Sunnybrooke	1,773	94	476	554	1,859	99	509	589
Bois-Franc	4,913	910	2,409	1,375	5,243	989	2,736	1,358
Du Ruisseau	1,475	339	82	297	1,517	368	87	317
Montpellier	2,586	1,435	985	1,273	2,779	1,540	1,105	1,292
Correspondance A40	2,851	1,805	1,419	240	3,085	1, 961	1,540	267
Mont-Royal	803	3,059	1,192	3,114	866	3,285	1,305	3,338
Canora	1,250	2,719	732	420	1,352	2,914	793	458
Gare Centrale	1,611	43,756	8,208	10,219	1,727	46,702	8,804	11,303
TOTAL	57,782	57,782	25,663	25,663	61,871	61,871	28,117	28,117

7.35 The peak loads for 2021 and 2031 and in the AM and Inter Peaks are observed at the link between Correspondence A40 and Mont Royal. The link loads are summarized in Table 7.14.

Table 7.14: REM Section Load Flows

Section	2021		2031	
	AM Peak	Inter Peak	AM Peak	Inter Peak
RIVE-SUD-DU QUARTIER	6,583	1,614	7,140	1,744
DU QUARTIER-PANAMA	10,370	2,256	11,130	2,431
PANAMA-ILE-DES-SOEURS	24,064	5,626	26,058	6,128
ILE-DES-SOEURS-GARE CENTRALE	24,063	5,634	26,055	6,138
AUTOROUTE 13-TECHNOPARC SAINT-LAURENT	744	1,180	879	1,678
TECHNOPARC SAINT-LAURENT-AÉROPORT	583	1,115	706	1,608
BOIS-FRANC-AUTOROUTE 13	1,800	2,350	2,001	2,918
AUTOROUTE 13-DES SOURCES	795	1,056	846	1,124
DES SOURCES-POINTE-CLAIRE	638	516	680	549
POINTE-CLAIRE-KIRKLAND	99	105	106	112
KIRKLAND-SAINTE-ANNE-DE-BELLEVUE	99	26	106	27
GARE CENTRALE-CANORA	5,124	7,129	5,563	7,662
CANORA-MONT ROYAL	4,288	7,281	4,670	7,831
MONT ROYAL-CORRESPONDANCE A40	3,373	6,543	3,675	7,081
CORRESPONDANCE A40-MONTPELLIER	2,755	7,490	3,016	8,150
MONTPELLIER-DU RUISSEAU	2,516	6,546	2,765	7,217
DU RUISSEAU-BOIS-FRANC	2,465	6,260	2,711	6,914
BOIS-FRANC-SUNNYBROOKE	357	3,099	385	3,283
SUNNYBROOKE-ROXBORO-PIERREFONDS	325	2,578	351	2,729
ROXBORO-PIERREFONDS-ÎLE BIGRAS	253	1,728	273	1,825
ÎLE BIGRAS-STE-DOROTHÉE	219	1,634	237	1,721
STE-DOROTHÉE-GRAND MOULIN	143	1,172	155	1,263
GRAND MOULIN-DEUX-MONTAGNES	138	1,044	149	1,127
GARE CENTRALE-ILE-DES-SOEURS	939	3,083	1,018	3,371
ILE-DES-SOEURS-PANAMA	541	2,975	591	3,255
PANAMA-DU QUARTIER	240	699	253	753
DU QUARTIER-RIVE-SUD	0	111	0	123
AÉROPORT-TECHNOPARC SAINT-LAURENT	816	1,160	952	1,397
TECHNOPARC SAINT-LAURENT-AUTOROUTE 13	813	1,168	949	1,405
SAINTE-ANNE-DE-BELLEVUE-KIRKLAND	1,053	309	1,120	354
KIRKLAND-POINTE-CLAIRE	2,330	481	2,476	536
POINTE-CLAIRE-DES SOURCES	4,274	1,276	4,541	1,390
DES SOURCES-AUTOROUTE 13	4,967	1,973	5,289	2,139
AUTOROUTE 13-BOIS-FRANC	6,003	3,233	6,473	3,642
DEUX-MONTAGNES-GRAND MOULIN	3,431	489	3,590	533
GRAND MOULIN-STE-DOROTHÉE	4,297	603	4,482	655

Réseau électrique métropolitain (REM) | REM Forecasting Report

Section	2021		2031	
	AM Peak	Inter Peak	AM Peak	Inter Peak
STE-DOROTHÉE-ÎLE BIGRAS	5,957	638	6,165	692
ÎLE BIGRAS-ROXBORO-PIERREFONDS	6,375	692	6,615	776
ROXBORO-PIERREFONDS-SUNNYBROOKE	9,854	1,134	10,272	1,280
SUNNYBROOKE-BOIS-FRANC	11,565	1,578	12,067	1,755
BOIS-FRANC-DU RUISSEAU	21,880	6,656	23,120	7,487
DU RUISSEAU-MONTPELLIER	23,066	6,726	24,323	7,564
MONTPELLIER-CORRESPONDANCE A40	24,454	7,382	25,811	8,307
CORRESPONDANCE A40-MONT ROYAL	26,120	7,613	27,595	8,513
MONT ROYAL-CANORA	24,780	6,430	26,171	7,230
CANORA-GARE CENTRALE	24,146	<mark>6</mark> ,588	25,502	7,395

Daily and Annual Forecasts

Daily and Annual expansion factors

- 7.36 The model estimates boardings by station and loadings per line section and direction for the AM peak (6am-9am) and the Inter Peak (9am-3pm) periods. In order to translate this into weekday and annual figures, expansion factors have been applied as discussed in section 5 of this report.
- 7.37 The weekday factors have been based on those observed in the existing services in the corridors. Estimated factors for both corridors (South Shore/A10 and Deux-Montagne/West Island) are very similar, and therefore we have used the same weekday factors for all the stations in the corridor, with the exception of the airport demand. The estimated resulting weighted average for the total boardings in the corridor are:

DM	ΑΜ ΡΕΑΚ ΤΟ ΡΕΑΚ	MIDDAY TO OFF PEAK
Average	1.95	1.64

- 7.38 For estimating annual demand, we have analyzed the observed annual factors in the various corridors and have developed a formulae that estimates annual factors based on the weight of the peak demand on an average week day (see Figure 4.8). We have applied this approach to estimate the annual demand for each REM station based on the AM peak and Inter Peak demand forecasted from the Transit Model choice model.
- 7.39 The following table shows the (weighted) annual factors for the stations located in the different corridors. Note that Gare Centrale is not included in the analysis and has been estimated based on the REM weighted average. The Airport factor has been estimated independently as the travel patterns there are quite different to regular commuters and students.

Table 7.15: Annual Factor Estimate (2021)

	Annual Factor	Peak Proportion
South Shore/A10	245	77%
Deux-Montagnes/West Island	263	70%
Sainte-Anne-de-Bellevue	264	70%
Airport	277	
REM WEIGHTED AVERAGE	255	

7.40 Note the following impacts:

- Better service in the Inter Peak: The proportion of demand in the Inter Peak has increased in
 most stations as a result of the much improved level of service. This results in higher capture
 from other transit services in the Inter Peak and therefore a lower weight of the peak period
 (from the current 85% peak factor in Deux Montagnes Rail Line compared to estimated 70%
 with REM). As a result, a higher annual factor is estimated, which is consistent with the
 estimated capture from express buses and the Orange Line.
- Impact of Park and Ride: Demand in the AM peak increases significantly in some stations with the introduction of P&R demand. This results in a higher weight of the peak period and a reduction of the annual factor. This seems to be the case in the South Shore area, where the expected capture in the peak is higher than in the Inter Peak, resulting in lower annualization factors

Daily and Annual Ridership Forecasts

7.41 We have applied the expansion factors presented previously to the AM peak and Inter Peak boardings extracted from the Transit Mode Choice Model and these are presented in table below.

Table 7.16: REM Daily and Annual Boardings (no ramp up)

	Daily		Anr	nual
	2021	2031	2021	2031
Île-des-Soeurs	804	862	183,779	197,334
Panama	18,413	20,116	4,627,687	5,060,300
Du Quartier	4,905	5,191	1,176,460	1,248,228
Rive-Sud	7,792	8,446	1,832,264	1,985,210
Technoparc Saint-Laurent	232	249	60,478	64,614
Aéroport Pierre-Elliott-Trudeau	4,106	5,148	1,137,358	1,425,996
Autoroute 13	862	929	208,662	225,226
Des Sources	2,075	2,223	652,018	697,789
Pointe-Claire	3,391	3,612	876,176	934,606
Kirkland	1,442	1,533	328,274	348,939
Sainte-Anne-de-Bellevue	1,390	1,500	331,208	360,691
Deux-Montagnes	4,712	4,980	1,191,501	1,266,472
Grand-Moulin	1,042	1,080	246,852	257,083
Sainte-Dorothée	2,138	2,168	516,192	522,415
Île-Bigras	633	703	150,198	170,690
Roxboro-Pierrefonds	4,736	5,022	1,156,047	1,232,189
Sunnybrooke	2,651	2,795	701,626	742,414
Bois-Franc	8,746	9,396	2,394,114	2,578,122
Du Ruisseau	2,067	2,155	473,692	494,974
Montpellier	5,741	6,144	1,525,359	1,628,658
Correspondance A40	6,431	7,051	1,640,798	1,808,594
Mont-Royal	7,250	7,808	2,271,671	2,448,214
Canora	4,788	5,159	1,140,604	1,231,145
Gare Centrale	58,466	62,777	14,676,856	15,816,417
TOTAL	154,812	167,045	39,499,876	42,746,320

7.42 With the ridership data extracted from the Transit Mode Choice model we can then estimate the passenger kilometres on REM by factoring individual link loads by the corresponding distance. The passenger kilometre estimates are shown in Table 7.17. The highest passenger kilometres are observed on links with high ridership and long length. These include Gare Centrale to Canora (5.4 kilometres), Bois Franc to Sunnybrooke (6.4 kilometres), Ile des Soeurs to Gare Centrale (5.4 kilometres) and Panama to Ile des soeurs (5.4 kilometres).

Table 7.17: REM Annual Passenger-Kilometres (no ramp up)

	2021	2031
RIVE-SUD-DU QUARTIER	5,752,091	6,258,004
DU QUARTIER-PANAMA	23,896,130	25,747,316
PANAMA-ILE-DES-SOEURS	85,648,247	93,242,693
ILE-DES-SOEURS-GARE CENTRALE	81,190,746	88,373,387
AUTOROUTE 13-TECHNOPARC SAINT-LAURENT	4,391,915	5,519,210
TECHNOPARC SAINT-LAURENT- AÉROPORT	4,580,515	5,810,505
BOIS-FRANC-AUTOROUTE 13	27,597,965	31,008,646
AUTOROUTE 13-DES SOURCES	15,619,591	16,750,806
DES SOURCES-POINTE-CLAIRE	13,182,430	14,120,541
POINTE-CLAIRE-KIRKLAND	3,748,128	4,025,180
KIRKLAND-SAINTE-ANNE-DE- BELLEVUE	3,051,173	3,302,517
GARE CENTRALE-CANORA	109,778,731	118,061,568
CANORA-MONT ROYAL	16,554,889	17,804,499
MONT ROYAL-CORRESPONDANCE A40	30,262,034	32,561,703
STATION DE CORRESPONDANCE A40-MONTPELLIER	18,565,649	20,017,457
MONTPELLIER-DU RUISSEAU	26,677,415	28,796,054
DU RUISSEAU-BOIS-FRANC	30,114,219	32,571,068
BOIS-FRANC-SUNNYBROOKE	50,379,826	53,216,740
SUNNYBROOKE-ROXBORO- PIERREFONDS	14,351,932	15,153,923
ROXBORO-PIERREFONDS-ÎLE BIGRAS	14,861,810	15,624,019
ÎLE BIGRAS-STE-DOROTHÉE	3,739,650	3,912,774
STE-DOROTHÉE-GRAND MOULIN	7,965,319	8,421,096
GRAND MOULIN-DEUX- MONTAGNES	5,314,852	5,637,721
TOTAL	597,225,258	645,937,430

Annual Profiles

- 7.43 We have developed annual demand and passenger kilometre profiles for every year from 2021 to 2041. These have been based on the following assumptions:
 - Forecasts between 2021 and 2031 have been interpolated
 - Forecasts from 2031 to 2041 have been extrapolated based on observed growth between 2016 and 2031 and reduced to reflect long term forecasting uncertainty and lack of long term socioeconomic data

Ramp up

- 7.44 The ramp up has been applied to each of the initial years of operation according to Table 4.17 (base assumptions). The application has been based on the estimation of the split between existing demand and new demand as different ramp up rates applied to reflect the fact that existing users are more likely to adopt and use the REM at a faster rate.
- 7.45 We have included as existing demand those users that are currently using a transit service in the corridors that are either going to be eliminated or truncated in order to feed the REM system. The following table shows the estimated existing demand for the Sponsor Case.

Table 7.18: Existing Demand Estimates

Corridor	Total Corridor Demand	In Scope	Existing	Boardings (assumed half of Existing)
South Shore	13,052,269	90%*	11,747,042	5,873,521
Deux Montagnes	7,495,900	100%	7,495,900	3,747,950
747	1,471,637	85%**	1,250,891	625,446

* Estimated that 90% of the boardings on the South Shore express buses cross the Champlain Bridge to access Montreal Island

** Estimated that only 85% of the 747 demand will shift to REM

7.46 The application of the assumptions shown above result in the estimated ramp up factors for the Sponsors Case shown in Table 7.19.

Table 7.19: Sponsors Case ramp up factors

	2021	2022	2023	2024
Annual Demand	78%	89%	96%	100%
Annual Pax-Km	75%	87%	94%	100%

Ridership and Passenger Kilometre profile

7.47 Table 7.20 shows a summary of the ridership and passenger kilometre totals for the first full year of operation (2021), 2026 and 2031 with the ramp up applied.

Réseau électrique métropolitain (REM) | REM Forecasting Report

		2021	2026	2031
Daily				
	Boardings	120,441	160,796	167,045
	Passenger kilometre	1,750,240	2,430,558	2,524,216
Annual				
	Boardings	30,657,333	41,086,677	42,746,320
	Passenger kilometre	446,567,748	621,058,891	645,937,430

Table 7.20: REM Ridership and Passenger Kilometre Summary (with ramp up)

7.48 Figure 7.8 and Figure 7.9 show the resulting ridership and passenger kilometre forecast profiles accounting for ramp up which explains the high growth in the 2021 to 2024 period when the ramp up is applied as the REM starts operations and it becomes an integral part of Montreal's transit network.

Figure 7.8: Annual Ridership Profile (with ramp up)

8 Sensitivity Tests

Identified risks

8.2

8.1 REM underlying projects (separately as Champlain LRT, Train de l'Ouest and Aerotrain projects) have been priorities for a long time.

The Sponsor Case reflects the sponsor assumptions of the most likely scenario, given the current engineering and operations analysis to date and latest discussions with a range of organizations. It also includes the consultant base assumptions for the model parameters and expected transit growth. However, there are a number of risks in any transit project and these need to be clearly identified to understand their potential ridership and operational impact. These include:

- Transit network: transit agencies (AMT, STM and CITs) are cooperating with CDPQ to develop an integrated transit network. However there is a risk on the level of transit integration and/or level of service to be implemented.
- Fare: there is some uncertainty with regards to the fare that will be charged on REM. The Sponsor Case assumes the REM fare will be similar to the current fare structure in Greater Montreal. However if different fares assumed e.g. STM fares applicable on REM stations in Montréal Island will reduce overall fares and will increase REM ridership at the expense of express buses and Métro lines
- Demand growth: there are some concerns with regards to the recent decline in transit ridership observed in the last couple of years (especially on STM bus services). This may be a temporary effect (particularly cold recent winters, employment reductions and low gas prices) or a more fundamental shift like competition from alternative modes (taxi industry transformation, car sharing, cycling) or changes in travel patterns (working from home, online shopping, etc).
- Model parameters: this study has included a substantial data collection exercise and development of forecasting model. However every model requires a number of assumptions related to the behaviour of passengers and how they value the different travel components and REM perceptions compared to other modes (bus, rail and Métro).

Sensitivity Tests

8.3 In order to assess the extent of the impact of these risks, a number of sensitivities have been carried out. The sensitivities were undertaken for Transit Mode Choice and the Airport models separately due to the different characteristics of both markets.

8.4 Table 8.2: presents the assumptions that have been adopted for the Sponsor Case, and high and low sensitivities to those variables:

	Base	Sensitivity Low	Sensitivity High
REM Service			
Travel times longer	Average speed of 56kph	Average speed 49kph (15% slower)	-
Wait times longer/ shorter	AM: 12 mins OP: 15 mins	AM: 18 mins OP: 20 mins	AM: 12 mins OP: 10 mins
Airport			
Fare Airport	\$5	\$7.50	\$2.50
747	No service	Same as current	N/A
Users perception of REM			
Transit users mode constant vs bus	3 min	0min	5min
Growth	As modelled	-50% of modelled	+30% modelled

Table 8.1: Sensitivity tests

8.5 Figure below shows the impact of the sensitivities on the Airport demand

Figure 8.1: REM Airport Station Ridership Sensitivity Tests (2031)

- 8.6 The figure shows clearly the existence of the 747 bus service is by far the one variable which has the largest impact on REM ridership.
- 8.7 Tests were also carried out on transit demand using the Transit Mode choice model. The results are shown in the figure below

8.8 Compared to the removal of the 747 bus service in the Airport case, the impact of the various variables is generally less dramatic. However, it affects to a larger number of trips.

Low and High Case Definition

- 8.9 Following the various sensitivity tests indicated above, we developed Low and High cases to understand the combined effect of various assumptions and enable to understand the range of ridership on the Sponsor Case.
- 8.10 Table 8.2: presents the assumptions adopted for the Sponsor Case, compared to the High and Low Cases. Each case includes the combination of all the different assumptions adopted for each variable.

Table 8.2: Sensitivity test definition

	Description	Sponsor Case	Low Case	High Case
Travel times	Deux-Montagnes to Rive-Sud	46:47	51:28	Same as sponsor
	Roxboro-Pierrefonds to Rive-Sud	36:47	40:28	Same as sponsor
	Sainte-Anne-de-Bellevue to Rive- Sud	46:23	51:01	Same as sponsor
	Aéroport Pierre-Elliott-Trudeau to Rive-Sud	38:30	42:21	Same as sponsor
	Correspondance A40 to Rive-Sud	23:00	25:18	Same as sponsor
Fares	South Shore fares	As per current fares	Same as sponsor	Same as sponsor
Fares	West Island fares	As per current fares (REM as AMT in Montreal Island)	STM fares on REM in Montreal Island	Same as sponsor
Fare Airport	Current average airport fare (\$3.15) with premium	\$8.15 (\$5 premium)	\$5.65 (\$2.50 premium)	Same as sponsor
Bus Re-Structuring	South Shore services	South Shore services re- directed to REM stations	Same as sponsor	Same as sponsor
Bus Re-Structuring	STM West Island services	Bus network reconfigured	Bus network reconfigured with 20% reduction in frequency	Bus network reconfigured with 10% increase in frequency (if wait time is 10 mins or lower no reduction applied)
747	Eliminated from service	Removed	Remains as current	Same a sponsor
REM perception	Transit users mode constant vs bus	3 minutes	0 minutes	5 minutes
Growth		As modelled	-50% modeled	+30% modeled
Ramp up		See Table 8.3 below	See Table 8.3 below	See Table 8.3 below
Car shift		Auto Shift Model	30% reduction	30% increase

Table 8.3: Ram	p Up	Assumptions	 Low and 	High	Case
----------------	------	-------------	-----------------------------	------	------

	West-Island/Deu Line Corridor	ıx-Montagnes	Airport Corridor		South Shore/A10 Corridor	
Year	Existing Deux Montagnes Rail	New	Existing	New	Existing Express (eliminated)	New
SPONSOF	CASE					
2021	100%	60%	80%	60%	90%	60%
2022	100%	80%	90%	80%	95%	80%
2023	100%	90%	95%	90%	100%	90%
2024	100%	100%	100%	100%	100%	100%
2024	100%	100%	100%	100%	100%	100%
LOW CAS	E					
2021	100%	55%	55%	55%	85%	55%
2022	100%	75%	75%	75%	90%	75%
2023	100%	85%	85%	85%	95%	85%
2024	100%	95%	95%	95%	100%	95%
2025	100%	100%	100%	100%	100%	100%
HIGH CAS	E					
2021	100%	70%	85%	70%	95%	70%
2022	100%	85%	95%	85%	100%	85%
2023	100%	90%	100%	90%	100%	90%
2024	100%	100%	100%	100%	100%	100%
2025	100%	100%	100%	100%	100%	100%

Ridership Forecasts

- 8.11 Table below shows the 2021 annual station boardings for the Low and High Case compared to the Sponsor Scenario.
- 8.12 There are large differences across the various stations as result of the considerable number of variables changed and their different impact by trip Origin and Destination. The large reduction in the boardings at Aéroport Pierre-Elliott-Trudeau is the result of maintaining the 747 route with the existing level of service and fare, which becomes a direct competitor to REM.

Table 8.4: REM Station Annu	I Boardings – Low	and High Cases (2021)
-----------------------------	-------------------	-----------------------

	Sponsor	Low Case	High Case	Difference (Low vs Sponsor)	Difference (High vs Sponsor)
Île-des-Soeurs	155,280	116,461	166,946	-25%	8%
Panama	3,910,041	3,522,208	4,276,282	-10%	9%
Du Quartier	994,019	941,960	1,068,584	-5%	8%
Rive-Sud	1,548,123	1,357,558	1,786,862	-12%	15%
Technoparc Saint-Laurent	43,784	31,892	48,982	-27%	12%
Aéroport Pierre-Elliott-Trudeau	823,413	238,615	989,599	-71%	20%
Autoroute 13	125,197	127,547	197,115	2%	57%
Des Sources	391,211	276,477	480,310	-29%	23%
Pointe-Claire	525,705	354,310	702,616	-33%	34%
Kirkland	196,964	115,702	244,506	-41%	24%
Sainte-Anne-de-Bellevue	198,725	141,073	275,938	-29%	39%
Deux-Montagnes	856,314	814,862	948,244	-5%	11%
Grand-Moulin	177,409	174,285	199,034	-2%	12%
Sainte-Dorothée	370,980	353,249	407,982	-5%	10%
Île-Bigras	107,945	80,609	128,022	-25%	19%
Roxboro-Pierrefonds	830,834	726,407	921,072	-13%	11%
Sunnybrooke	504,249	448,179	555,559	-11%	10%
Bois-Franc	1,720,614	1,050,639	2,120,069	-39%	23%
Du Ruisseau	340,436	283,128	408,732	-17%	20%
Montpellier	1,096,253	794,534	1,268,852	-28%	16%
Correspondance A40	1,179,217	885,362	1,394,970	-25%	18%
Mont-Royal	1,632,616	1,380,687	2,054,731	-15%	26%
Canora	819,736	644,968	1,070,440	-21%	31%
Gare Centrale	12,108,269	10,131,648	13,729,549	-16%	13%
TOTAL	30,657,333	24,992,362	35,444,998	-18%	16%

8.13 The full profile for ridership and passenger kilometres for the low and high cases are shown in Figure 8.3: and Figure 8.4. Note that ramp up has been applied to these forecasts and hence the steep growth during the first few years of REM operations.

Figure 8.4: Annual Passenger Kilometres – Low and High Case (with ramp up)

8.14 The table below compares the results for 2021 and 2031. The larger difference observed in 2021 is due to the ramp up impact. Note that the change in boardings and passenger kilometres are closely aligned.

Table 8.5: Low and High Case Comparison

	Boar	dings	Passenger Kilometres		
	2021 (with ramp up)	2031	2021 (with ramp up)	2031	
Sponsor	-	-	-	-	
Low	-18%	-22%	-17%	-22%	
High	+16%	+12%	+15%	+10%	

8.15 Finally, we have reviewed the peak loads for the various cases to understand the impact on REM operations. The peak loads are detailed below.

Table 8.6: Low and High Case Peak Loads

	AM Peak Load (no ramp up)		Difference from Sponsor Case	
	2021	2031	2021	2031
Sponsor	26,120	27,595	-	-
Low	22,689	22,950	-13%	-17%
High	28,614	31,113	10%	13%

Appendices

A List of Road Network Changes

steer davies gleave

	Modification		
No	Nom	Horizon	d'horizon
171	R-337 Élargissement à 2 voies en direction Nord entre les rues Rodrigue et Philippe Chartrand	2016	2018
172	R-335 Réaménagement de l'intersection avec le boulevard Industriel à Bois-des-Filions et ajout d'une entrée à Henry-Bessemer vers A-640 Ouest	2016	2018
215	Réaménagement de la rue Viau et St-Clément entre Pierre-de-Coubertin et Notre-Dame	2016	
221	Réaménagement du carrefour Pie-IX / Henri-Bourassa	2016	
225	Réaménagement de l'échangeur Décarie	2016	
290	Projet complexe autoroutier Turcot phase I - Construction	2016	
291	Projet échangeur Dorval – état fin 2015 («Phase I»)	2016	
330	Réaménagement échangeur A20 / A-30	2016	2017
333	Voie supplémentaire dans la bretelle A-30 O vers R-116	2016	2018
334	A-30 E+O : Élargissement de la chaussée de droite (entrecroisement) entre la R-116 et le boul. Clairevue	2016	2018
501	A-15 nouvel echangeur entrees/sorties rue Notre-Dame - Mirabel	2016	

	Modification		
No	Nom	Horizon	d'horizon
294	Projet autoroute Bonaventure	2017	
331	Voie supplémentaire dans la bretelle A-30E vers A-20	2017	
296	Nouveau pont Champlain (version déc 2015)	2018	
335	A-30 O: Élargissement de la chaussée de droite (entrecroisement) entre Grande-allée et l'A-10	2018	
211	Prolongement du boul. Cavendish	2020	
222	Réaménagement du pont Pie-IX entre Montréal et Laval	2020	2022
336	Parachèvement de l'A-35 entre St-Sébastien et St-Armand	2020	
129	A-640 Nouvel échangeur avec Urbanova - Terrebonne	2021	
133	A-440 Nouveau viaduc et bretelles entre A-19 et A-25	2021	
146	A-19 Parachèvement entre Laval et la Rive-Nord	2021	2031
170	Prolongement du boul. René-Laennec	2021	
212	Prolongement boul. L'Assomption et Souligny avec lien direct au Port de Montréal	2021	
216	Réaménagement A-25 et accès au Port de Montréal	2021	
226	Boulevard urbain entre Gouin et l'A-40 dans l'emprise de l'A-440 (sans échangeur)	2021	
293	Projet complexe autoroutier Turcot phase II (version 5.1)	2021	
332	A-20 / R-132 : Construction bretelle F, à Longueuil	2021	
601	Réaménagement de la rue Charles à Mirabel entre l'A-15 et le chemin Ste- Henriette	2021	
608	Contournement de St-Lin - Laurentides	2021	
610	Élargissement du ch. St-Simon entre l'A-50 et le boul. St-Canut	2021	
-	Projet échangeur Dorval –« Phase I » finale	-	Ajouté: 2019

Projets inclus à partir de l'horizon 2031			
No	Nom	Horizon	d'horizon
337	A-10 : Élargissement entre A-30 et A-35	2025	
338	A-20 : Élargissement entre Sainte-Julie et Saint-Hyacinthe	2025	
339	A-30 : Élargissement entre A-10 et A-20	2025	
134	Parachèvement du boul. Dagenais à 2 voies/dir entre Des Laurentides et Industriel	2026	
292	Projet échangeur Dorval – Phase II (finale)	2026	Enlevé
606	LEOS - Lien Est-Ouest Sud entre les R-333 et R-117 à St-Jérôme, secteur de Lafontaine	2026	
609	Prolongement de l'A-13 à 4 voies entre l'A-640 et le chemin de la Côte- Nord	2026	
604	Ajout d'une 3e voie sur l'A-15 (deux directions) entre l'entrée km 60 à St- Sauveur et l'échangeur de la R-117 à St-Jérôme (km 46)	2031	
607	Doublement des voies de l'A-50 entre Mirabel et Lachute	2031	

B SP Research Review

steer davies gleave

Quality and Reliability Assessment

Introduction

- 1.1 There are intrinsic and intangible benefits perceived by passengers between rail-based modes (such as REM) and conventional bus. These benefits are generally categorized as "quality and reliability benefits" and reflect a key component of mode choice.
- 1.2 Quality benefits arise from parameters associated with modelling "quality" aspects of the transit system and these include trip ambience (generally vehicle characteristics), ride quality and stop attributes.
- 1.3 Traditionally, 'quality' is incorporated as part of a mode-specific perception factor which is applied in a model. The application of quality parameters in a model has traditionally been done either through a 'fixed' mode constant (applied to in-vehicle travel time or a mode specific boarding penalty) or a 'factor' on in-vehicle travel (IVT) time. The difference between the application of these parameters means that the impact of each factor will vary considerably based on trip length e.g. a short trip will be impacted by a 'fixed' variable more than an IVT 'factor' while the opposite will be true for longer trips.
- 1.4 In practice the most accurate measure would likely be a mixture of both, with fixed constants reflecting stop related attributes (shelter, CCTV, real time information) and variable constants reflecting journey ambience (ride quality, climate control).
- 1.5 Mode-specific factors can be estimated through a variety of methods including as a calibration parameter (for existing transit networks), a review of values applied in other studies/models or based on stated preference surveys.
- 1.6 Finally, it is important to note that quality and reliability represent two different aspects of a trip but it can sometimes be challenging to distinguish between them, particularly when transit users are asked about a 'new' transit mode in the region and have limited experience with it.

Quality Impact

- 1.7 Mode-specific perception factors can be applied at the mode-choice and/or assignment stages and are largely accepted in the transportation modelling community^{1 2 3}.
- 1.8 Currie¹ extensively examined how passengers valued trip attributes for on-street bus, BRT, LRT and heavy rail systems, compiling information from a range of studies and sources. The conclusion was that BRT, LRT and heavy rail are all favoured relative to conventional bus. Based on Currie's analysis, BRT and LRT mode constants could be up to 20 minutes relative to conventional bus and heavy rail could be up to 33 minutes. These results, together with results of others studies are included in Table 1.

³ T. Litman, "Evaluating Public Transit Benefits and Costs," Victoria Public Transport Policy Institute, Victoria, BC, 2015

¹ G. Currie, "The Demand Performance of Bus Rapid Transit", Journal of Public Transportation, vol. 8, no. 1, pp. 41-55, 2005.

² Department for Transport (UK), "Transport Analysis Guidance (TAG) UNIT M3.2", London, UK, 2014.

Table 1. Quality benefit estimates

			Transit Modes	5
		Bus Rapid	Light Rail	Heavy Rail
Source	Location/ Case	Transit vs.	vs.	vs.
		On-Street Bus	On-Street Bus	On-Street Bus
	Manchester/Car Available		20	
11 J	Passengers		20	
Halcrow Fox (1995)	Manchester/Car Not		0	
	Available Passengers		0	
Bray (1995)/Transfund NZ	Adelaide/All Trips	20		
(2000) ¹		20		
Ableson (1995)/Fouracre International/All Trips				4-6
et al. (1990) ¹				+0
Van Der Waard (1988) ¹	Holland/All Trips		2-3	2-3
Kilvington (1991) ¹	UK Several Studies/Car	9	15	12
	Available Passengers	-		
Kilvington (1991) ¹	Dublin/Bus Users	12	16	16
London Railplan Review ¹	UK Several Studies/Bus Users	9	8	7
Prosser et al. (1997) ¹	Sydney/A.M. Peak		4	9
	Study 19 (B) 1989			-56
	Study 19 (B) 1989			-27
	Study 7 (B) 1992			-5
	Study 4 (B) 1993			0
1	Study 17 (B) 1987			0
	Study 8 (B) 1988			3
	Study 20 (B) 1989			4
Wardman (1997) ²	Study 20 (B) 1989			6
wardman (1997)	Study 3 (B)			10
	Study 28 (B) 1989		1	11
	Study 28 (B) 1989			11
	Study 4 (B) 1993			22
	Study 23 (B) 1990			33
	Study 13 (B) 1991		1	
	Study 9 (B) 1989		10	
	Study 12(B) 1990		18	
	Average of values	12	10	4
	Range of values	9 to 20	2 to 20	-56 to 33
				1.9
Loods New Concration Tr	rangit IIK (2010)	2.8 to 5.6		
	anon, OK (2010)	20 (stop)		
Manchester Metrolink Revealed Preference, UK			15 to 1	9 (CA)
(2005)				
CA=Car Available			5 to 6	(NCA)
NCA=non Car Available				(
Hurontario LRT (2013)			0.85 of b	ous time
Surrey LRT (2015)			4.	5
Hamilton LRT (2015)			0.81 of b	ous time

1.18 Furthermore the US's Federal Transit Administration also provides some guidance on the range of mode constants expected which are generally in line with the values presented in the table above. This is shown in Table 2⁴.

Table 2. FTA Mode Constant Recommendations

Guideway attributes that are different <u>from local bus</u>	Maximum Alternative specific effects vs. local bus (mins)		Maximum Guideway - in-vehicle time factor	
	Guideway only	Guideway + local bus	Any guideway	
Guideway like characteristics	8	3	0.85	
 Reliability of vehicle arrival, travel time 	4	2	0.90	
- Branding/visibility/learnability	2	1	-	
- Schedule-free service	2	0	-	
- Ride quality	-	-	0.95	
Span of good service	3	0	-	
Passenger facilities	4	3	-	
- Amenities at stops/stations	3	2	-	
- Dynamic schedule information	1	1	-	
Vehicle amenities	-	-	0.95	
Availability of seat	-	-	0.95	
Maximum effect	15	6	0.75	

Reliability Impact

- 1.19 It is common that the average travel time varies from hour to hour on any given day, and to a large extent the service timetable can reflect this. Passengers take this into account when planning their travel.
- 1.20 What passengers cannot predict is the day-to-day variation in travel times for making the same travel at the same time of day, and regularly arrive at their destination later or earlier than desired. This is clearly an inconvenience to passengers, and reliability is often a factor for users to choose to make the trip by car rather than transit.
- 1.21 In the context of this report, travel time reliability is defined as the variation in travel times that passengers cannot predict as measured by the standard deviation of travel time compared to the average travel time. As with the average travel time, this can vary by time of day.

⁴ Travel Forecasting for New Starts, Federal Transit Administration, September 2007

- 1.22 Rail-based systems will generally improve both journey time reliability and headway reliability. While journey time benefits are captured within conventional modelling and evaluation (which are based on 'average' journey times), reliability benefits are associated with the reduction in day-to-day journey time variability for similar times of travel.
- 1.23 Journey time variability is particularly important for transit riders who need to arrive at a given time (e.g. to get to work, to make on onward transport connection) and in these cases people often need to 'factor in' additional time to ensure they compensate for unreliability.
- 1.24 Traditionally, the impacts of transit unreliability have not been explicitly accounted for in transport models and the benefits from improved reliability did not have a formal role in the evaluation of transit projects. However, the fact that travellers do respond to the level of reliability (and the existence of economic benefits or costs associated with this response) has recently been acknowledged by transportation planners and economists.
- 1.25 There has been significant research into reliability. In the UK this research has been used to develop an approach to value and monetize reliability benefits that form part of UK's TAG⁵. The approach used is to estimate the 'average lateness' based on the standard deviation of arrival times (compared to the timetable or schedule), and to value this 'unreliability' by a higher perception factor based on research.
- 1.26 Given the availability of data, two key components of journey reliability can be measured:
 - In-vehicle time variability passengers experiencing unpredictable journey times; and
 - Headway variability passengers experiencing unpredictable wait times
- 1.27 Improvements in travel time reliability can also help deliver second order benefits (but are not generally accounted for). These include:
 - Having variable travel times can lead to bunching of services, meaning:
 - Passengers experience longer average wait times than implied by the timetabled headway
 - Passengers experience higher levels of crowding, as passenger loads are not evenly spread between services
 - Reliable travel times mean that the operating efficiency can be improved and the level of service capacity can be delivered more consistently.
- A literature review of reliability inputs has confirmed that the average-lateness method is the preferred method for determining reliability benefits in benefits-cost-analyses⁶.
 Reliability effects of transit projects are captured in various forms of evaluation practices in the USA, UK, Australia, New Zealand, Sweden and the Netherlands⁷.
- 1.29 However this value can also be included in models as part of the mode constant.

http://bca.transportationeconomics.org/benefits/travel-time-reliability/reliabilityandbca. [Accessed 2015].

⁵ Department for Transport (UK), "Transport Analysis Guidance (TAG) UNIT A1.3", London, UK, 2014.

⁶ D. Carlos & L. Carrion, "Value of travel time reliability: A review of current evidence," Transportation Research Part A, no. 46, pp. 720-741, 2012.

⁷ Transportation Economics Committee Wiki, "Reliability and BCA," [Online]. Available:

C Bus Services in Calibration

List of Bus Routes in Scop)e
----------------------------	----

Transit agency	Route	Name
STM	64	Grenet
STM	68	Pierrefonds
STM	69	Gouin
STM	70	Bois-Franc
STM	72	Alfred-Nobel
STM	90	Saint-Jacques
STM	100	Crémazie
STM	110	Centrale
STM	115	Paré
STM	121	Sauvé / Côte-vertu
STM	128	Ville-Saint-Laurent
STM	164	Dudemaine
STM	170	Keller
STM	171	Henri-Bourassa
STM	174	Côte-Vertu-Ouest
STM	175	Griffith / Saint-François
STM	177	Thimens
STM	180	De Salaberry
STM	191	Broadway / Provost
STM	195	Sherbrooke / Notre-Dame
STM	196	Parc-Industriel-Lachine
STM	200	Sainte-Anne-de-Bellevue
STM	201	Saint-Charles / Saint-Jean
STM	202	Dawson
STM	203	Carson
STM	204	Cardinal
STM	205	Gouin
STM	206	Roger-Pilon
STM	207	Jacques-Bizard
STM	208	Brunswick
STM	209	Des Sources
STM	211	Bord-du-Lac
STM	213	Parc-Industriel-Saint-Laurent
STM	215	Henri-Bourassa
STM	216	Transcanadienne
STM	217	Anse-à-l'Orme
STM	219	Chemin Sainte-Marie
STM	225	Hymus
STM	401	Express Saint-Charles
STM	405	Express Bord-du-Lac
STM	407	Express Île-Bizard
STM	409	Express Des Sources
STM	411	Express Lionel-Groulx
STM	419	Express John Abbott
STM	425	Express Anse-à-l'Orme
STM	460	Express Métropolitaine
STM	468	Express Pierrefonds / Gouin

Transit agency	Route	Name
STM	470	Express Pierrefonds
STM	475	Express Dollard-des-Ormeaux
STM	485	Express Antoine-Faucon
STM	491	Express Lachine
STM	495	Express Lachine / LaSalle
STM	496	Express Victoria
STM	747	Aéroport PETrudeau / Centre- ville
RTL	5	
RTL	15	
RTL	30	
RTL	31	
RTL	32	
RTL	33	
RTL	34	
RTL	35	
RTL	37	
RTL	38	
RTL	42	
RTL	44	
RTL	45	
RTL	46	
RTL	47	
RTL	49	
RTL	50	
RTL	55	
RTL	59	
RTL	60	
RTL	86	
RTL	87	
RTL	90	
RTL	100	
RTL	115	
RTL	132	
RTL	135	
RTL	142	
RTL	144	
RTL	150	
AMT	90	Express Chevrier
Ville de Saint-Jean	96	
OMIT Saint-Julie	600	
CITLR	121	
CITLR	122	
CITLR	123	
CITLR	124	
CITLR	132	
CITLR	133	
CITLR	321	
CITLR	323	

Transit agency	Route	Name
CITLR	340	
CITLR	341	
CITLR	343	
CITVR	300	
CITCRC	400	
CITCRC	401	
CITCRC	500	
CITCRC	600	
CITROUS	100-115	
CITROUS	130	

D Forescasting Report Clarification

steer davies gleave

steer davies gleave		Memo	
То	CDPQ Infra		
Сс			
From	Dan Gomez-Duran		
Date	21 November 2016		
Project	REM Forecasting	Project No.	22951101

REM Forecasting Report Clarification

Report Corrections

The current version of the report has 2 typos (in yellow we show the revised text):

4.93 It is unclear how each of these possible reasons contributed to the selection of the bus versus REM in the Corridor SP results. In light of our professional experience and extensive past LRT and rapid transit work in Canada and around the world, we believe the trader model shows a more realistic estimation for the REM characteristics.

4.102 We believe the trader model shows a more realistic estimation for the REM characteristics with similar quality and reliability characteristics to the existing rail and Métro services, and therefore we expect a similar mode constant.

<u>These are typos and do not impact any of the analysis presented in the report. These corrections will also</u> <u>ensure the report is more coherent and consistent with the discussion in other sections of the report on the</u> <u>trader model.</u>

A revised version of the report will be provided.

Stated Preference Surveys

Stated Preference surveys enable to gauge passenger perceptions to current and 'new' transit modes (such as REM) and is one of the many components in a ridership study. A critical review of SP survey results is an inherent part of the development of demand forecasts to ensure results are robust and in line with professional experience and results from other studies and therefore adjustments/review of SP survey results is a relatively common occurrence.

Table 4.8 in the report shows that respondents effectively preferred the bus to REM by 6 minutes. This is not in line with extensive experience worldwide showing that passengers prefer rail-based to bus-based transit systems as result of the higher reliability, comfort (generally a smoother ride) and station facilities (shelter, lighting, seats, passenger information) of rail-based systems.

The rationale for these responses is not clear but we identified a potential number of them in the report (paragraph 4.92):

- Opposition to the elimination of direct express routes to their final destination
- Misunderstanding of the REM project and potential association with a service of lower service quality and reliability (streetcar)

steer davies gleave

Resistance to change

REM vs Bus

Table 4.9 shows the results of only selecting traders and how the REM mode constant is more in line with the expectation that REM is perceived similarly to commuter rail and Métro and a 5 minute penalty for bus users to account for the reliability, comfort and station facilities offered by rail-based systems.

Appendix C presents evidence on mode constants from other jurisdictions. There is no 'exact' value on what a rail-based mode constant should be, but there is overwhelming experience and analysis confirming passenger preference of rail-based versus bus-based systems as shown in the appendix.

Table 7.2 presents the actual REM mode constant applied (a 3 minute penalty against bus) based on professional judgement. This is lower than the REM, Métro and rail mode constant estimated in Table 4.9 (5 minutes). Using this lower value ensures we do not over-estimate passengers potential reaction to REM, but acknowledges the large body of evidence showing people's preferences of rail versus bus systems. The result of applying a 3 minute REM mode constant against bus means that the REM to Rail/Metro mode constant is effectively +2 minutes (to maintain the 5 minute difference between Rail/Metro and bus which was value used in the base calibration).

 Table 4.8 (Original)
 Table 4.9 (Traders)
 Table 7.2 (Applied in forecasts)

 REM vs Rail/Metro
 +11
 0
 +2

Table below summarizes the mode constants estimated and those applied.

+6

Sensitivity analysis was explicitly carried out on these parameters to understand their impact (see table 8.1). Figure 8.2 shows the impact of applying no REM mode constant (reduction in REM demand by 7%) and a 5 minute mode constant against bus (increases REM demand by 5%).

-5

-3

Réseau électrique métropolitain (REM)

Breffage technique Mise à jour sur le projet

21 mars 2017

Filiale de la Caisse de dépôt et placement du Québec

cdpqinfra.com

TRAVAIL EN CONTINU

- > Poursuite du processus de consultation
- > Améliorations réalisées à ce jour
- > Trois axes prioritaires
- > Entente novatrice avec l'UPA et la CMM

PROCESSUS DE CONSULTATION

- Rencontres avec plus de 3000 citoyens et
 300 représentants, incluant les élus, les groupes environnementaux, les spécialistes du patrimoine
- > Tables de travail régulières avec les experts des municipalités et les sociétés de transport sur la fluidité et l'intégration
- Rencontres en continu afin de peaufiner les aspects techniques du projet
- Le processus de consultation et de collaboration se poursuivra tout au long des phases de développement et de construction

AMÉLIORATIONS RÉALISÉES À CE JOUR

AMÉLIORATIONS (AOÛT 2016)

- > Acquisition de la structure du CN en amont de la gare Centrale pour éviter des impacts sur les édifices à caractères patrimoniaux (édifice Rodier et New City Gas) et la fermeture de trois rues
- Passage en tunnel pour éviter le secteur du Parc-nature des Sources
- Déplacement d'équipements à la station
 Ste-Anne-de-Bellevue pour éviter des milieux humides

- Trois nouvelles stations annoncées au centre-ville de Montréal pour améliorer l'intégration du REM :
 - Deux nouvelles connexions au métro de Montréal (lignes verte et bleue)
 - Station Bassin Peel pour desservir à la fois Griffintown et Pointe-St-Charles

AMÉLIORATIONS RÉALISÉES À CE JOUR

 Des partenariats pour favoriser l'accès multimodal aux stations

Permettre aux usagers du futur REM d'accéder aux stations par des moyens de transport diversifiés et complémentaires offrant des alternatives concrètes et viables à l'auto-solo

- Un partenariat avec le Jour de la Terre pour compenser les GES pendant la construction du REM
- S'assurer que le projet contribue à la réduction des GES dès la première pelletée de terre

AUJOURD'HUI : POURSUITE DU TRAVAIL

> Les consultations ont permis de dégager des constats et besoins sur 3 plans prioritaires sur lesquels les améliorations se poursuivent :

FRÉQUENCE

Une augmentation de la fréquence du service

FLUIDITÉ

Une plus grande fluidité des déplacements et un meilleur accès aux stations

INTÉGRATION

Une meilleure intégration aux plans d'aménagement des villes, aux systèmes de transport et à l'environnement > Ajout de 40 nouvelles voitures pour augmenter la qualité du service et contribuer au désengorgement de la ligne orange

		Heures de pointe du matin (période de 3 heures)			heures)
	FRÉQUENCE	NOMBRE DE DÉPARTS	CROISSANCE DU NOMBRE DE DÉPARTS (%)	CAPACITÉ THÉORIQUE ⁽¹⁾	
De la Rive-Sud au centre-ville (incluant le tronçon central jusqu'à Bois-Franc)	moins de 16 min (jusqu'au centre-ville)	2 min 30 avant 3 min	72 départs	+ 20%	43 200
De Deux-Montagnes au centre-ville	moins de 35 min	5 min avant 6 min	36 départs	+ 20%	21 600
De l'Ouest au centre-ville	moins de 35 min	10 min avant 12 min	18 départs	+ 20%	10 800
De l'aéroport au centre-ville	moins de 26 min Express : 18 à 20 min	10 min avant 12 min	18 départs	+ 20%	10 800

FRÉQUENCE : PLAN D'OPÉRATION À L'HEURE DE POINTE

CDPQ Infra

FLUIDITÉ : FACILITER LES ACCÈS AUX STATIONS

- Passerelle piétonne au-dessus de la voie ferroviaire à Ville Mont-Royal
- Passerelle piétonne à la station du Quartier à Brossard pour accéder au côté ouest
- Accès plus direct de la gare Centrale au métro Bonaventure
- > Raccordements aux pistes cyclables existantes

- Étagement des voies ferroviaires à l'avenue des Bois et à la rue des Érables à Laval
- Étagement de la voie routière à la rue Henri-Dunant à Deux-Montagnes

INTÉGRATION : ENVIRONNEMENT ET MUNICIPALITÉS

- Aménagement de liens fauniques dans l'éco-territoire de la coulée verte du ruisseau Bertrand
- Engagements pris pour préserver les milieux floristiques et fauniques, ainsi que les milieux humides et les aires protégées

STATIONS ET ÉQUIPEMENTS

- Déplacement de la station Kirkland à l'angle de la rue Jean-Yves
- Accès au Centre d'entretien partagé de Pointe-Saint-Charles

BILAN DES AMÉLIORATIONS APPORTÉES

Coûts de projet

(en millions de dollars)

Coûts estimés

Projet REM	avril 2016	5 500
Trois nouvelles stations – centre-ville de Montréal	novembre 2016	400
> Améliorations récentes	mars 2017	140
COÛTS DE CONSTRUCTION		6 040

VALORISATION DES TERRES AGRICOLES

Une entente novatrice

> Trois partenaires unis pour valoriser le territoire agricole

Infra

UNE NOUVELLE ENTENTE NOVATRICE

CDPQ Infra

Objectifs de la fiducie créée

- Assurer la vitalité et l'occupation dynamique de la zone agricole par les activités agricoles à proximité du REM
- Optimiser la mise en valeur des bois et corridors forestiers
- Contribuer au maintien en production des terres agricoles et la mise en culture des superficies non exploitées du territoire

Décret environnemental / zone agricole	Appel de propositions	Début des travaux	Mise en service des premières rames
Printemps	Été	Automne	Fin
2017	2017	2017	2020

Filiale de la Caisse de dépôt et placement du Québec